首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
以水解度为考察指标,在单因素实验基础上,利用正交实验优化酶解玛咖粗蛋白制备玛咖多肽的工艺,同时通过·OH、DPPH·及O2-·清除实验研究提取过程中产生的玛咖醇提液以及在最适条件下制得的玛咖多肽的抗氧化活性,并对玛咖多肽进行氨基酸组成分析。结果表明,酶解玛咖粗蛋白的最适酶是碱性蛋白酶,酶解制备玛咖多肽的最适条件是酶解时间4 h、酶解pH为10.5、酶解温度55℃、加酶量1.6×104 U/g,在此条件下,玛咖粗蛋白的水解度为(31.55%±0.74%)。稀释一倍的玛咖醇提液对各自由基清除率为最大,对DPPH自由基的清除率为94.44%,对·OH的清除率为85.05%,对O2-·清除率为53.85%。玛咖多肽对·OH、DPPH·及O2-·的IC50值分别为0.85、0.44、0.86 mg/mL,且表现出一定的量效关系。另外,玛咖多肽中Tyr、His、Lys、Pro四种氨基酸含量为16.98%,其氨基酸组成与抗氧化活性存在一定关系。该结果说明玛咖醇提液及玛咖蛋白均具有一定的抗氧化活性。  相似文献   

2.
王璐莎  陈玉连  黄明  周光宏 《食品科学》2015,36(17):146-151
为了解酶解时间、蛋白酶种类对鸭肉蛋白酶解产物抗氧化特性的影响,分别用复合蛋白酶、风味蛋白酶和胰酶对鸭肉进行单酶酶解和双酶分步酶解(胰酶+复合蛋白酶、胰酶+风味蛋白酶),制备不同时间段的酶解产物,并对其自由基清除能力(1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基、羟自由基(hydroxyl radical,·OH)和超氧阴离子自由基(superoxide radical,O2-·))和总还原力进行分析。结果表明:各鸭肉蛋白酶解产物的DPPH自由基清除率随着酶解时间的延长而增加,但·OH和O2-·清除率及总还原力随着酶解时间的延长先增加后降低(P<0.05)。在5 种鸭肉蛋白酶解产物中,复合蛋白酶酶解物表现出最强的DPPH自由基清除能力(75.70±1.54)%、·OH清除能力(59.41±1.24)%和O2-·清除能力(98.50±4.51)%,但用双酶分步酶解得到的酶解产物表现出最强的总还原力(0.330±0.017)。因此鸭肉蛋白酶解产物的抗氧化特性受酶解时间和蛋白酶种类的影响,复合蛋白酶是制备鸭肉蛋白源抗氧化肽的最适蛋白酶。  相似文献   

3.
为了利用较为优质的植物性蛋白葵花籽粕蛋白质,在微波酶解条件下,运用单因素确定了葵花籽粕抗氧化多肽液的最适脱盐条件为:酶解液pH4.5、阴阳离子树脂比例3:2、过柱速度8倍柱/h。在此条件下,脱盐率为84.54%、·OH和O2-·的清除率分别为43.62%和57.08%。最适超滤条件为:超滤压力0.16 MPa、液体流速2.5 mL/s、超滤时间60 min。在此条件下,渗透通量为25.98 L/m2·h、膜污染度为0.021、·OH和O2-·的清除率分别为73.02%和86.58%。通过对葵花籽粕蛋白酶解液进行了深入的研究,为葵花籽粕多肽产品的开发和工业化批量生产功能性生物活性肽产品提供了理论依据。  相似文献   

4.
水牛奶乳清蛋白制备抗氧化活性肽工艺的研究   总被引:1,自引:0,他引:1  
实验是以水牛奶为原料,分离纯化后得到乳清蛋白。利用碱性蛋白酶、中性蛋白酶、胰蛋白酶、木瓜蛋白酶和胃蛋白酶5种不同的蛋白酶对水牛奶乳清蛋白酶解以制备抗氧化活性多肽。酶筛选结果显示,中性蛋白酶是最适宜酶解水牛奶乳清蛋白制备抗氧化活性肽,其酶解液的还原能力和DPPH自由基清除率较其他4种酶高。探讨酶解反应时pH、温度、时间、酶浓度对酶解反应的水解度、酶解液的还原能力和DPPH自由基的清除率的影响,在单因素试验基础上,采用响应面法对酶解工艺进行优化。结果表明,中性蛋白酶酶解乳清蛋白的最佳工艺参数为:pH为7.4,温度为50.5℃,酶与底物浓度比为2.1%,酶解时间5.0h,此时2mg/mL酶解物的DPPH自由基清除率为32.58%。实测结果与预测值吻合效果良好。  相似文献   

5.
为研究碱性蛋白酶酶解核桃饼粕制得的酶解液的抗氧化活性,运用碱溶酸沉提取法提取核桃饼粕蛋白,利用碱性蛋白酶酶解制得核桃饼粕酶解液及核桃饼粕分离蛋白酶解液.通过对·OH、O2-、DPPH自由基清除能力及总还原力的测定,对比核桃饼粕与其分离蛋白酶解产物的抗氧化活性.结果 显示,·OH清除率分别为17.32%和18.11%,O...  相似文献   

6.
为了阐明超声-离子液体处理后乳清蛋白酶解动力学特性,研究初始底物质量浓度、酶质量浓度和酶解时间对乳清蛋白水解度的影响,在此基础上建立了乳清蛋白-碱性蛋白酶酶解动力学模型,并通过清除1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基法、螯合Fe~(2+)法和还原力法研究了超声-离子液体处理对乳清蛋白酶解产物抗氧化活性的影响。结果表明:超声-离子液体处理后,乳清蛋白的酶解动力学模型发生了改变,其酶解反应所需的临界酶质量浓度降低了43.1%,这表明超声-离子液体处理促使了乳清蛋白酶解。抗氧化实验表明,超声-离子液体处理后,乳清蛋白酶解产物清除DPPH自由基活性和螯合Fe~(2+)能力分别提高了14.4%和28.4%,其还原力也得到了改善。体积排阻色谱分析表明,超声-离子液体处理显著提高了乳清蛋白酶解产物中1~5 ku组分的含量(P0.05),比未处理组提高了12.2%。  相似文献   

7.
为研究腊肉酶解液的抗氧化性,将四川腊肉用动物蛋白复合水解酶进行水解,并在单因素试验的基础上通过响应面设计优化酶解条件。结果表明:最优酶解条件为53.3℃,6h,0.25%(酶量),1∶3(料液比),在此条件下腊肉样品水解度达7.35%。取上述酶解液进行梯度稀释,并通过测定其对羟基自由基(·OH)与DPPH自由基的清除能力对其抗氧化能力进行评价。当腊肉酶解液浓度为10%时,DPPH自由基清除率达到79.79%,其IC50为6.19%;当腊肉酶解液浓度为5%时,羟基自由基(·OH)清除率达到70.61%,其IC_(50)为3.26%。  相似文献   

8.
分别采用胃蛋白酶和碱性蛋白酶对鸡蛋清蛋白和大豆蛋白进行单酶和双酶酶解,筛选得到抗氧化活性较高的鸡蛋清蛋白酶解液Ⅰ(A-P)H和大豆蛋白酶解液ⅡPH,并分别对上述两种酶解液依次进行超滤和树脂分离,得到高活性的组分ⅠFs和ⅡFs。将酶解液Ⅰ(A-P)H与ⅡPH以及组分ⅠFs和ⅡFs分别进行两两复配,通过总还原力、1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基和羟自由基(·OH)抗氧化评价体系及Chou-Talalay联合指数(combination index,CI)分析其协同抗氧化能力。结果表明:酶解液Ⅰ(A-P)H与ⅡPH复配物对总还原力的CI总还原力、对DPPH自由基清除率的CIDPPH自由基和对·OH清除率的CI·OH分别为0.404、0.827和0.557;相对应树脂分离组分ⅠFs和ⅡFs复配物的CI总还原力、CIDPPH自由基和CI·OH分别为0.344、0.383和0.808,相比酶解液的复配物,其CI总还原力和CIDPPH自由基分别下降了14.85%和53.69%。研究表明:酶解液Ⅰ(A-P)H与ⅡPH以及树脂分离组分ⅠFs和ⅡFs具有显著的协同抗氧化效果,而通过超滤和树脂粗分离能有效增强酶解液的抗氧化能力及其协同作用。  相似文献   

9.
黄昆  顾欣  王文江  李迪  李雅松  王建中 《食品工业科技》2012,33(18):107-110,115
以DPPH自由基清除率为指标,对风味蛋白酶酶解脱脂山杏仁的工艺进行研究。在单因素实验的基础上,采用二次回归正交旋转组合设计对其酶解工艺进行优化。建立脱脂山杏仁酶解液的DPPH自由基清除率与蛋白酶用量、酶解温度及酶解pH,3个实验因素的正交回归模型方程,通过频率分析法得到酶解最佳工艺条件:蛋白酶用量0.50%,酶解温度55℃,酶解pH7.2,酶解时间4h,最佳条件下酶解液的DPPH自由基清除率为56.8%。在此条件下,山杏仁蛋白酶解液清除DPPH自由基的IC50值为4.18mg/mL。经过超滤分离获得不同分子量的抗氧化多肽,用DPPH自由基清除率评价其抗氧化性,得分子量小于5ku的肽清除DPPH自由基能力最强。  相似文献   

10.
小麦蛋白是小麦淀粉加工的副产物,酶解是提高小麦蛋白溶解性和功能性的有效方式,而酶解用酶种类可能对酶解产物的功能性如抗氧化活性有一定影响。采用碱性蛋白酶、中性蛋白酶、胃蛋白酶、风味蛋白酶、胰蛋白酶、木瓜蛋白酶6种常用的蛋白酶分别对小麦蛋白进行酶解,并对酶解4 h后酶解物的多肽得率、分子质量分布、1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基清除率、超氧阴离子自由基(O_2~-·)清除率、羟自由基(·OH)清除率等反映水解程度和抗氧化能力的主要指标进行评价。结果表明,风味蛋白酶酶解物中多肽得率最高,达91.44%,且分子质量小于3 000 D的多肽含量达76.9%;酶解物质量浓度为3 mg/m L时,木瓜蛋白酶酶解物对DPPH自由基清除作用最好,清除率为65.12%(P0.01),其次是风味蛋白酶(58.43%)和碱性蛋白酶(55.29%);碱性蛋白酶酶解物对O_2~-·清除率效果最好,清除率为58.68%(P0.01),其次是风味蛋白酶(49.25%);碱性蛋白酶和木瓜蛋白酶酶解物对·OH清除效果最佳,清除率分别为59.23%和58.16%。结果说明,蛋白酶种类对小麦蛋白酶解物抗氧化活性影响显著,风味蛋白酶对提高蛋白水解程度和生成小分子质量多肽的作用明显,而碱性蛋白酶、木瓜蛋白酶和风味蛋白酶对提高酶解产物抗氧化活性效果较好。  相似文献   

11.
本文以驼乳和牛乳的乳清蛋白为原料,经胃蛋白酶水解后,通过超滤及葡聚糖凝胶层析对其水解物进行分离纯化,其后对获得的蛋白肽进行抑菌活性、二喹啉甲酸法(BCA)蛋白浓度、相对分子质量及氨基酸组成的测定。结果表明:经超滤获得的驼乳和牛乳分子量<3 kDa的多肽片段-F3具有最强的抑菌活性,将F3(<3 kDa)组分通过层析处理得到的驼乳G-25-2和牛乳G-25-2抑菌肽纯度较高(BCA蛋白浓度分别为95.60%和95.32%);驼乳G-25-2和牛乳G-25-2组分对大肠埃希氏菌和金黄色葡萄球菌均有抑菌作用,最小抑菌质量浓度分别均为32.50和65.00 mg/mL;氨基酸分析结果显示,高活性抗菌肽中的总碱性氨基酸和总疏水性氨基酸含量最高,驼乳G-25-2中分别为32.80%和65.76%,牛乳G-25-2中分别为31.77%和58.70%。本研究结果表明,驼乳与牛乳均具有抑菌效果,且其抑菌能力高于牛乳,为今后研究驼乳抑菌肽的深入研究提供理论参考。  相似文献   

12.
为提高泥鳅肉水解产物的抗氧化活性,本研究利用木瓜蛋白酶和风味蛋白酶对泥鳅蛋白进行酶解,在此基础上,加入单种糖或者混合糖与酶解产物以质量比1:1进行美拉德反应,并以产物对羟基自由基、超氧阴离子、DPPH自由基的清除率为指标评价其抗氧化性能。结果表明,加入单种糖进行反应的产物抗氧化性能低于混合糖,其中又以木糖和乳糖质量比1:3混合效果最佳,对羟基自由基、超氧阴离子自由基、DPPH自由基的清除率分别为47.13%±2.24%、58.27%±2.19%、68.09%±1.33%。再通过正交实验得到在pH7、80 ℃下反应45 min的产物对羟基自由基的清除率效果最佳,为58.86%;在pH6、100 ℃下反应45 min的产物对超氧阴离子自由基的清除率最佳,为70.63%;在pH8,温度90 ℃下反应60 min的产物对DPPH自由基的清除率最佳,为85.40%。研究表明,采用混合糖参与美拉德反应可显著提高泥鳅蛋白酶解产物的抗氧化活性,为泥鳅蛋白的工业化生产提供科学的理论依据。  相似文献   

13.
目的:探讨沙棘多糖体外清除自由基及抗脂质过氧化作用。方法:采用体外抗氧化活性法测定沙棘多糖对DPPH自由基、羟自由基和超氧阴离子自由基清除能力及沙棘多糖总还原能力;制备5%小鼠肝脏匀浆,通过模拟建立体外小鼠肝匀浆自发性脂质过氧化模型、CCl4体外诱导小鼠肝匀浆脂质过氧化模型、H2O2体外诱导小鼠肝匀浆脂质过氧化模型、Fe2+-VC 体外诱导小鼠肝脏脂质过氧化模型,利用TBA显色法,观察沙棘多糖对脂质过氧化的抑制作用。结果:沙棘多糖对DPPH自由基、OH自由基和超氧阴离子自由基都具有一定的清除能力,其IC50值分别为1.55、1.23、8.31 mg/mL,其浓度为2 mg/mL时,还原能力稍高于同浓度VC。沙棘多糖对小鼠肝匀浆自发性脂质过氧化及CCl4、H2O2、Fe2+-VC所诱导的肝脏脂质过氧化均具有抑制作用,其IC50值分别为1.10、1.59、9.13、1.39 mg/mL。结论:沙棘多糖具有一定的抗氧化活性及抗脂质过氧化作用。  相似文献   

14.
目的:旨在应用响应曲面实验优化挤压豌豆蛋白的酶解条件,以期得到最优的抗氧化肽和准确的酶解预测模型。方法:以O2-·清除率为评价指标,利用响应曲面实验优化中性蛋白酶对含水量为25%的豌豆蛋白挤出物的酶解条件,通过透析纯化酶解物,得到抗氧化肽,并采用高效液相测定其分子量。结果:酶解最佳条件:加酶量11.80%、温度37.50 ℃、pH6.90、底物浓度8.00%,此条件下,O2-·清除率为55.29%±0.20%。透析发现分子量小于1 ku的酶解液抗氧化活性最强,达60.18%,其分子量集中在200~800 u左右,为2~8肽。结论:经验证,所建预测模型准确可靠,酶解产物抗氧化性高,可为相关生产和工艺产品开发提供参考价值。且经显著性分析发现透析可显著提高肽的自由基清除率。  相似文献   

15.
以大黄花鱼为实验材料,利用酶法水解大黄花鱼肉蛋白制备抗氧化肽。以还原力为响应值,通过单因素结合响应面法对中性蛋白酶酶解大黄花鱼肉蛋白的酶用量、酶解温度、底物浓度以及酶解时间进行了优化,结果表明:四种酶中,中性蛋白酶酶解的酶解液水解度(DH)和还原能力最高。最优酶解工艺条件为酶用量为0.4%、酶解温度45 ℃、底物浓度25.0%、酶解时间7 h、体系pH7.0时,还原力为0.951。酶解液DH为37.51%,超氧阴离子自由基清除力(O2-·)为82.42%。SDS-PAGE(聚丙烯酰氨凝胶电泳)结果显示,酶解7 h大黄花鱼肉蛋白肌动蛋白完全消失,水解形成肌球蛋白轻链分子量为27、15和6 kDa。  相似文献   

16.
《Journal of dairy science》2022,105(3):1878-1888
Bioactive peptides derived from milk proteins are widely known to possess antibacterial activities. Even though the antibacterial effects of milk-derived peptides are widely characterized, not much focus is given to their antifungal characterization. Therefore, in this study, we investigated the antifungal properties of camel and cow whey and casein hydrolysates against various species of pathogenic Candida. The hydrolysates were produced using 2 enzymes (alcalase and protease) at differing hydrolysis durations (2, 4, and 6 h) and tested for their antifungal properties. The results showed that intact cow whey and casein proteins did not display any anti-Candida albicans properties, whereas the alcalase-derived 2 h camel casein hydrolysate (CA-C-A2) displayed a higher percentage of inhibition against Candida albicans (93.69 ± 0.26%) followed by the cow casein hydrolysate generated by protease-6 h (Co-C-P6; 81.66 ± 0.99%), which were significantly higher than that of fluconazole, a conventional antifungal agent (76.92 ± 4.72%). Interestingly, when tested again Candida krusei, camel casein alcalase 2 and 4 h (CA-C-A2 and CA-C-A4), and cow whey alcalase-6 h (CO-W-A6) hydrolysates showed higher antifungal potency than fluconazole. However, for Candida parapsilosis only camel casein alcalase-4 h (Ca-C-A4) and cow casein protease-6 h (Co-C-P6) hydrolysates were able to inhibit the growth of C. parapsilosis by 19.31 ± 0.84% and 23.82 ± 4.14%, respectively, which was lower than that shown by fluconazole (29.86 ± 1.11%). Overall, hydrolysis of milk proteins from both cow and camel enhanced their antifungal properties. Camel milk protein hydrolysates were more potent in inhibiting pathogenic Candida species as compared with cow milk protein hydrolysates. This is the first study that highlights the antifungal properties of camel milk protein hydrolysates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号