首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用X射线衍射分析(XRD)、电子背散射衍射分析(EBSD)、电导率测试、硬度测试、拉伸试验、晶间腐蚀试验和剥落腐蚀试验,研究了固溶处理前的预回复处理(250℃×24 h+300℃×6 h+350℃×6 h+400℃×6 h)对高合金化铝合金Al-13.0Zn-3.16Mg-2.8Cu-0.2Zr-0.07Sr挤压材在T652态组织与性能的影响。结果表明,固溶前的预回复处理降低了位错密度,减小了平均晶粒尺寸(8.764μm vs.4.835μm)和平均晶界角度,显著提高了低角度晶界数目分数(0.410 vs.0.658)和电导率(24.6%ICAS vs.26.3%ICAS),降低了硬度(228.2 HV vs.227.0 HV)、屈服强度(680.3 MPa vs.662.5 MPa)、抗拉强度(714.5 MPa vs.695.5 MPa)和伸长率(7.6%vs.5.6%),提高了抗晶间腐蚀和抗剥落腐蚀性能;定量分析显示,预回复处理轻微降低了合金位错强化、低角度晶界强化和高角度晶界强化的总强化,合金强度的降低主要归因于合金固溶强化和时效沉淀析出相强化的总强化的降低;抗腐蚀性能的提高可以归因于合金低角度晶界数目百分比的提高。  相似文献   

2.
采用电子背散射衍射分析(EBSD)、X射线衍射分析(XRD)、硬度测试、电导率测试、拉伸试验、晶间腐蚀和剥落腐蚀试验,研究了预回复处理(250℃/24 h+300℃/6 h+400℃/6 h)对超高强铝合金Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr0.047Sr组织与性能的影响。结果表明:合金固溶前的预回复处理可以细化合金晶粒,平均晶粒尺寸从7.30μm减小到5.57μm;经预回复处理的合金中存在较多的低角度晶界,其比例为0.623。预回复处理对合金的硬度与电导率影响较小,但经预回复处理的合金强度明显提高。峰值时效(120℃/48 h)下经预回复处理的合金屈服强度为633.2 MPa,相对未预回复处理的合金屈服强度提高35 MPa。预回复处理对合金的抗晶间腐蚀与剥落腐蚀性能影响较大,晶间腐蚀等级从4级改善到3级;剥落腐蚀等级从EA级提升到PB级。  相似文献   

3.
研究预回复对固溶-T652处理超高强铝合金Al-12.5Zn-3.6Mg-1.2Cu-0.2Zr-0.06Sr挤压材组织与性能的影响。结果表明:合金在固溶-T652处理前预回复处理((250℃,24 h)+(300℃,6 h)+(350℃,6 h)+(400℃,6 h))能明显提高合金的位错密度,显著细化合金晶粒(平均晶粒尺寸从11.14μm下降到5.25μm),降低晶界平均角度(从17.81°下降到12.57°),提高低角度晶界所占比例(由66.2%提高到76.4%),但硬度和强度略有下降。预回复处理能显著改善合金的抗晶间腐蚀性能,最大晶间腐蚀深度由247.7?m降为138.0?m。定量分析结果表明:合金强度的降低可归因于时效沉淀强化效果的降低;抗腐蚀性能的提高可归因于低角度晶界比例的提高和晶界析出相的粗化。  相似文献   

4.
采用硬度与电导率测试、拉伸试验、晶间腐蚀和剥落腐蚀试验、扫描电镜(SEM)观察以及XRD分析,研究了Al-11.54Zn-3.51Mg-2.26Cu-0.24Zr-0.0025Sr铝合金经预回复(250℃×24 h+300℃×6 h+350℃×6 h+400℃×6 h)-固溶(450℃×2 h+460℃×2 h+470℃×2 h)-预压缩(2%~3%)-T76时效(121℃×5 h+153℃×16 h)后的抗拉强度、硬度、电导率、晶间腐蚀和剥落腐蚀性能。结果表明,与同状态下经T6时效后的性能相比,T76时效后合金硬度和强度都明显下降,分别降低了9.59%、12.46%,但仍然保持较高水平;其电导率和伸长率分别提高了19.64%和28.13%;剥落腐蚀从EB级提高到EA级;晶间腐蚀深度从147.5μm变为113.11μm。  相似文献   

5.
采用X射线衍射分析(XRD)、电子背散射衍射分析(EBSD)、电导率测试、硬度测试、晶间腐蚀试验和剥落腐蚀试验,研究了预回复固溶时效处理前的热机械加工(Thermo-mechanical processing,TMP)对超高强铝合金Al-13.01Zn-3.16Mg-2.8Cu-0.2Zr-0.07Sr组织及性能的影响。结果表明,TMP(450℃/2 h+460℃/2 h+470℃/2 h(水淬)固溶、400℃/24 h过时效、约45%压缩量)处理后降低了合金的位错密度(0.150→0),减小了平均晶粒尺寸(6.256μm→5.012μm)和平均晶界角度,显著提高了低角度晶界数目百分比(0.618→0.700),电导率(25.3%IACS→27.2%IACS)和伸长率(8.1%→8.2%)基本未发生变化,降低了硬度(229.6 HV→221.0 HV)、屈服强度(653.8 MPa→599.5 MPa)、抗拉强度(701.9 MPa→646.3 MPa),提高了抗晶间腐蚀和抗剥落腐蚀性能。定量分析显示,热机械加工轻微提高了合金位错强化、低角度晶界强化和高角度晶界强化的总强化,合金强度的降低主要归因于合金固溶强化和时效沉淀析出相强化的总强化的降低。抗腐蚀性能的提高可以归因于合金低角度晶界数目百分比的提高。  相似文献   

6.
采用X射线衍射分析(XRD)、电子背散射衍射分析(EBSD)、电导率测试、硬度测试、拉伸试验、晶间腐蚀试验和剥落腐蚀试验等方法,研究了预回复工艺对7085铝合金组织与性能的影响。结果表明,固溶前的预回复处理对合金的晶体取向存在一定影响,降低了位错密度,细化了晶粒尺寸(平均晶粒尺寸从7.414μm降到6.809μm),提高了硬度(从199.0 HV提高到212.5 HV)、屈服强度(从481.2 MPa提高到552.4 MPa)、抗拉强度(从528.2 MPa提高到582.0 MPa)。此外,预回复处理明显提高了合金的抗晶间腐蚀性能,但是合金的电导率略有降低,抗剥落腐蚀性能也略微下降。定量分析显示,预回复显著提高了固溶强化和时效沉淀强化的总和,这也是合金强度提高的主要原因。抗剥落腐蚀性能的降低可以归因于合金低角度晶界百分比的降低。  相似文献   

7.
通过对比分析热压缩-预回复-固溶(CPS)-时效工艺和热压缩-固溶(CS)-时效工艺,探究了预回复对7085铝合金不同方向的微观组织与性能的影响。结果表明:预回复处理不仅改善了晶粒等轴性,抑制再结晶,保留了合金位错密度,细化了晶粒尺寸(Y方向平均晶粒尺寸从18. 02μm降为10. 65μm),并且提高了合金中小角度晶界的比例。提高了7085铝合金的抗剥落腐蚀性能和抗晶间腐蚀性能,Y方向晶间腐蚀深度仅为19. 65μm。此外,合金的抗拉强度和屈服强度提高,塑性有所降低。合金抗腐蚀性能和力学性能存在各向异性。  相似文献   

8.
采用硬度和电导率测试、晶间腐蚀和剥落腐蚀试验、光学金相电镜观察,研究强化固溶处理对含锶钪7085型铝合金(Al-8.34Zn-1.89Mg-1.83Cu-0.15Zr-0.060Sr-0.10Sc)硬度、电导率、晶间腐蚀和剥落腐蚀性能的影响。结果表明,与常规固溶(470℃×2 h)处理相比,强化固溶(470℃×2 h+480℃×2 h+490℃×2 h)处理使合金中粗大析出相溶解更为充分,晶粒(亚晶粒)等轴性显著提高。经强化固溶处理加传统T6(121℃×24 h)处理后合金的硬度提高、电导率略有降低,抗晶间腐蚀和剥落腐蚀性能显著提高。  相似文献   

9.
采用光学显微镜、扫描电镜、透射电镜、拉伸试验、剥落腐蚀试验等分析方法,研究了不同固溶、时效处理制度对含钪7085铝合金(Al-7.5Zn-1.5Mg-1.4Cu-0.15Zr-0.15Sc)强度和剥落腐蚀性能的影响。结果表明:与常规固溶处理和双级固溶处理相比,强化固溶可使合金中粗大相溶解更充分,晶粒细化,同时提高合金强度和剥落腐蚀性能;在T6、T76、回归再时效3种时效状态下,T76时效后合金的强度和剥落腐蚀抗性最好,这与形成的粗大不连续的晶界析出相有关。含钪7085铝合金最佳固溶时效制度为:强化固溶(450℃×1 h+460℃×2 h+475℃×2 h)+T76时效(120℃×5 h+160℃×7 h)处理。  相似文献   

10.
含Sr7085型铝合金的晶间腐蚀和剥落腐蚀性能   总被引:4,自引:2,他引:2  
对一种Sr微合金化的7085型铝合金的晶间腐蚀性能和剥落腐蚀性能进行了研究。结果表明,该合金经均匀化退火、热压缩变形加工、强化固溶(470℃×2 h+480℃×2 h+490℃×2 h)处理、冷水淬火、T6(120℃×24 h)时效处理后,具有很好的抗晶间腐蚀性能和抗剥落腐蚀性能,其抗腐蚀性能明显优于7075-T6合金。按GB 7998-2005(ASTM G110-1992)晶间腐蚀试验标准,该合金未发生晶间腐蚀,仅发生点蚀。按GB/T 22639-2008(ASTM G34-2001)剥落腐蚀试验标准,其剥落腐蚀等级为PA级。该合金所具有的优异抗腐蚀性能与其具有较低的合金元素总量(10.073%)、较高的w(Zn)/w(Mg)(4.97)比和w(Cu)/w(Mg)(1.06)比以及Zr和Sr的微合金化作用(细化组织、抑制再结晶)是一致的。  相似文献   

11.
采用金相显微镜、扫描电子显微镜和Х射线衍射仪显微分析技术,研究了强化固溶工艺对含Sr 2099(Al-2.52Cu-1.87Li-1.19Zn-0.497Mg-0.309Mn-0.0825Zr-0.0605Sr)型铝锂合金抗晶间腐蚀和抗剥落腐蚀性能的影响。结果表明:与常规固溶(540℃×2 h)+T8时效(121℃×14 h+151℃×48 h)工艺相比,强化固溶(540℃×2 h+550℃×2.67 h)+T8时效(121℃×14 h+151℃×48 h)工艺显著减少了合金中的粗大未溶相,再结晶程度提高,细化了晶粒,且促进等轴晶的形成。按晶间腐蚀标准(GB7998-2005)和剥落腐蚀标准(GB/T 22639-2008),强化固溶+T8时效工艺降低了该合金的抗晶间腐蚀能力,但显著提高了该合金的抗剥落腐蚀能力。  相似文献   

12.
采用硬度与电导率测试、拉伸试验、晶间腐蚀和剥落腐蚀试验以及X射线衍射(XRD)、扫描电镜(SEM)、电子背散射衍射(EBSD)分析等方法研究预变形对Al-12.45Zn-3.56Mg-1.12Cu-0.21Zr-0.0553Sr铝合金挤压材组织与性能的影响。结果表明:该合金在(121℃,24 h)时效制度下,预变形处理能有效引入位错,位错密度从0.197×10~(-14)m~(-2)提高到1.156×10~(-14) m~(-2);同时,由于位错对强度的贡献高达58.7 MPa。根据EBSD分析,经预变形处理后,合金的低角度晶界所占比例为66.2%,比未经预变形处理的合金提高12.6%,平均晶界角度值降低3.894°,平均晶粒尺寸增长6.396mm。预变形能够明显提高合金的抗晶间腐蚀性能(最大晶间腐蚀深度由222.1mm降低至165mm),对剥落腐蚀性能的影响不明显。  相似文献   

13.
采用光学显微镜察、扫描电镜(SEM)和透射电镜(TEM)观察等分析方法,研究了7075铝合金铸锭组织及均匀化工艺。结果表明,Al-Zn-Mg-Cu-Cr合金的铸态凝固组织由Al基体+Mg(Zn,Al,Cu)2非平衡共晶相组成;均匀化温度在460℃时,合金中枝晶组织部分消失,低熔点相溶解不充分,在470℃均匀化出现过烧现象。合金经460℃×5h+480℃×24h和460℃×5h+490℃×24h均匀化之后,晶界处的共晶组织基本消除,但晶粒显著长大,两种双级均匀化的晶粒尺寸分别约为120μm和150μm。用400℃×5h+460℃×24h+470℃×24h三级均匀化后,基本消除了共晶组织,均匀化效果很好且晶粒尺寸约为75μm,是最佳的均匀化制度。  相似文献   

14.
采用光学显微镜、透射电镜和常温拉伸等方法研究了均匀化制度对7055铝合金力学性能及抗剥落腐蚀性能的影响。结果表明:单级均匀化处理后的合金抗剥落腐蚀性能最差,分级均匀化制度可调节Al_3Zr粒子的析出行为,有效地抑制合金再结晶的发生;经350℃×12 h+470℃×24 h的双级均匀化处理后,可使7055合金获得大量尺寸细小且均匀弥散分布的Al_3Zr粒子,同时显著提高合金时效后的力学性能和抗剥落腐蚀性能。  相似文献   

15.
罗勇  许晓静  张允康  张振强 《热加工工艺》2012,41(14):203-205,208
研究了强化固溶处理对7075铝合金晶间腐蚀和剥落腐蚀性能的影响.结果表明,与常规固溶(470℃×2h)+T6时效处理相比,强化固溶(470℃×2h+480℃×2 h+490℃×2h)+ T6时效处理使7075铝合金中粗大第二相溶解更为充分,加速了合金时效动力学,改善了合金的抗腐蚀性能,抗晶间腐蚀等级由3级提高至2级,抗剥落腐蚀等级由EC级提高至EA级.  相似文献   

16.
通过维氏硬度测试、拉伸测试、剥落腐蚀与晶间腐蚀试验、扫描电镜(SEM)与透射电镜(TEM)分析等手段,研究了回归再时效(RRA)处理对Al-6Zn-2Mg-2Cu合金力学性能及耐腐蚀性能的影响。结果表明:经RRA处理后的Al-6Zn-2Mg-2Cu合金硬度、强度与单级时效(T6态)相当,均高于双级时效(T73态)。RRA 190℃×40 min处理,合金硬度达到最高,回归时间继续延长,硬度逐渐减小。Al-6Zn-2Mg-2Cu合金经不同时效处理后抗腐蚀性能由低到高依次为:T6、RRA 190℃×20 min、RRA 190℃×40 min、RRA 190℃×60 min、T73。RRA处理可保持Al-6Zn-2Mg-2Cu合金高强度的同时提高其抗腐蚀性能。经120℃×24 h+190℃×40 min+120℃×24 h的RRA处理后,合金硬度较高且腐蚀敏感性小,具有良好的综合性能。  相似文献   

17.
采用显微硬度与电导率测试、拉伸试验、晶间腐蚀及剥落腐蚀试验、金相(0M)及扫描电镜(SEM)观察,研究了热处理制度对含Sr Al-7.0Zn-1.4Mg-1.5Cu-0.14Zr 7085铝合金挤压材性能的影响.结果表明:固溶处理对合金的拉伸性能影响显著,强化固溶合金强度要明显高于常规固溶合金,常规固溶(470℃×2 h)T76(121℃×5 h +153℃×16 h)时效处理合金的屈服强度与抗拉强度分别为436.8 MPa、492.25 MPa,而经强化固溶(470℃×2 h+480℃×2 h+490℃ ×2 h)T76处理的合金为471.8MPa、518.25 MPa;时效制度对合金的硬度、电导率及抗腐蚀性能有较大影响,T76(121℃×5 h+153℃×16h)时效处理后,合金获得较好的性能配合.本合金的最佳热处理制度为强化固溶T76时效处理,此时合金具有良好的综合性能.  相似文献   

18.
采用显微硬度与电导率测试、拉伸试验和剥落腐蚀实验、金相(OM)及扫描电镜(SEM)观察,研究7075铝合金经强化固溶(470℃,2h+480℃,2h+490℃,2h)T76时效(121℃,5h+153℃,16h)后的硬度、电导率、拉伸性能与剥落腐蚀性能。结果表明:T6(121℃,24h)态7075铝合金的硬度与抗拉强度较高,但延伸率、电导率与抗剥落腐蚀敏感性较差;T76态7075铝合金在硬度与抗拉强度维持较高水平的情况下,其延伸率、电导率和抗剥落腐蚀性能明显改善,相对于T6态,T76态合金的延伸率提高了8.18%,电导率提高了9.375%,剥落腐蚀性能从EB级提高到EA级。研究结果说明7075铝合金经强化固溶T76处理,合金强度损失不大,而其延伸率、电导率和抗剥落腐蚀性能得到明显改善。  相似文献   

19.
采用拉伸试验、电镜观察和晶间腐蚀(IGC)试验,研究回归再时效(RRA)处理对喷射成形7075合金组织形貌、力学性能和晶间腐蚀性能的影响,并与T6峰值时效、T73过时效进行对比分析。结果表明:经T6处理后,晶内大量细小弥散的η′相使合金的抗拉强度达到760 MPa,但晶界处连续分布的η相和窄小的晶界无析出带(PFZ)使合金抗晶间腐蚀性能变差,晶间腐蚀深度达131.4μm;经T73处理后晶界η相断开及PFZ大幅增宽可改善合金的耐蚀性,晶间腐蚀深度仅为2.0μm,但晶内η′相粗化及体积分数的减小使合金抗拉强度大幅下降,仅为676MPa;采用(120℃,24 h)+(200℃,10 min)+(120℃,24 h)的RRA处理后合金晶内η′相再次大量析出,致使抗拉强度达758 MPa,略低于T6态的抗拉强度,而晶界处断续分布的η相和宽度略增的PFZ使合金抗晶间腐蚀性能也显著改善,晶间腐蚀深度为16.8μm,与经T73处理后的接近。  相似文献   

20.
采用组织观察、XRD分析、硬度和导电率测试、晶间及剥落腐蚀试验,研究了一种含锶钪2099型铝锂合金的固溶处理工艺.研究发现,该合金经540℃×2 h固溶或540℃×2h+550℃ ×2h两种固溶处理,并且经过121℃×14 h+181 ℃×48h二次时效后,合金的硬度、导电率、抗晶间腐蚀和抗剥落腐蚀性能都处于较高水平且相差不大.结果表明,540℃×2 h +550℃×(0~2)h固溶处理提高了含锶钪2099铝锂合金的硬度和导电率,是该合金适宜的时效处理工艺.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号