首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用于抑制多相异步电动机定子谐波电流的电抗滤波器   总被引:1,自引:0,他引:1  
电压型逆变器驱动多相异步电动机运行时,虽然降低了转矩脉动和转子谐波损耗,却在定子绕组出现了明显的低次谐波电流.在总结现有的方法基础上,提出一种新型的电抗滤波方法.电抗器采用和多相交流电机定子类似的电磁结构,适当调整绕组的分布,使在多相电机中不产生旋转磁场的谐波电流在滤波电抗器中产生旋转磁场.这些谐波电流在多相异步电动机中仅遇到漏电抗,在滤波电抗器中却遇到高值的耦合电抗,因而有选择地对定子中的显著谐波电流进行滤波.以六相移30°的绕组结构为例,对包括滤波器的多相异步电动机建立了数学模型并进行了仿真分析,仿真结果验证了电抗器的有效性.  相似文献   

2.
The losses in an induction motor fed from six-step voltage and current source inverters are calculated and a comparison of efficiencies when supplied from these sources is given. The equivalent circuit that includes the effect of space harmonics and corrected for the skin effect in rotor bars is used for the calculation of main and stray copper losses. Stray iron losses due to magnetomotive force (MMF) and permeance harmonics, end leakage and skew leakage are also considered. Losses in the motor when supplied from these sources are also calculated using the modified equivalent circuit having stray and core loss resistors and their efficiencies are compared.  相似文献   

3.
Field harmonics produce a radial electromagnetic force in a squirrel-cage induction motor with a particular number of rotor slots corresponding to the number of poles. The radial force causes vibration and acoustic noise. In this paper, a simplified equation for the radial force at no-load is introduced, and the relation between the width of the stator slot opening and the radial force is discussed quantitatively. The field harmonic component produced by the interaction between the fundamental magnetomotive force due to the stator current and the pulsation of air-gap permeance dominates for the radial force. Furthermore, the vibration of the stator core due to the radial force is calculated under a simple assumption. The calculated results are verified by experiments.  相似文献   

4.
A field analysis is presented for slip-ring induction motors with general external impedance asymmetry. The method is based upon a rotating-field theory approach including spatial MMF (magnetomotive force) harmonics. It is shown that a series of nonmains frequency voltages are induced in the stator winding for both balanced and unbalanced rotors. The method is also used to derive the harmonic equivalent circuit for a balanced three-phase slip-ring motor with a skewed rotor. The analysis is verified by comparing predicted torque and current characteristics with measured values obtained from a machine with a balanced rotor and with a rotor connected to asymmetrical external resistances. The influence of MMF harmonics on the phase equivalent circuit and the motor performance is demonstrated. Operation with an unbalanced rotor results in a loss of steady torque and the introduction of large oscillating torques  相似文献   

5.
考虑旋转磁通的PMSM铁心损耗数值计算   总被引:1,自引:0,他引:1  
为了准确计算交流永磁同步电机(PMSM)铁心损耗,采用二维有限元法对PMSM定子与磁极区域电磁场进行了分析研究,阐述了定子铁心不同区域磁场的变化规律及磁极区域涡流场的分布规律.在此基础上,借助谐波分析的方法,综合考虑电机中交变与旋转磁场的影响,给出了一种较准确求解定子铁心损耗和PMSM转子涡流损耗的计算方法,并与传统的计算方法进行了比较.结果表明,考虑旋转磁场及谐波磁通密度影响时的定子铁心损耗计算值与传统的仅考虑交变基波磁通密度时的损耗计算值相比有显著增加,更接近于实际测量值,磁极涡流损耗值与定子槽口大小密切相关,占电机总损耗的比重较大,是不可忽略的.  相似文献   

6.
In this paper, the authors investigate the iron loss of interior permanent magnet motors driven by pulsewidth modulation (PWM) inverters from both results of the experiments and the finite-element analysis. In the analysis, the iron loss of the motor is decomposed into several components due to their origins, for instance, the fundamental field, carrier of the PWM inverter, slot ripples, and harmonic magnetomotive forces of the permanent magnet in order to clarify the main loss factors. The Fourier transformation and the finite-element method considering the carrier harmonics are applied to this calculation. The calculated iron loss is compared with the measurement at each driving condition. The measured and the calculated results agree well. It is clarified that the iron loss caused by the carrier of the PWM inverter is the largest component at low-speed condition under the maximum torque control, whereas the loss caused by the harmonic magnetomotive forces of the permanent magnet remarkably increase at high-speed condition under the flux-weakening control.  相似文献   

7.
This paper presents some analysis techniques of the space vector of voltages induced in the stator windings after supply disconnection, to detect broken rotor bars in squirrel-cage induction machines. When the motor is disconnected from the supply no currents flow in the stator windings and the voltages measurable at its terminals are due to flux produced by rotor currents. When the rotor is healthy, the voltages measured at motor terminals are almost sinusoidal because of the symmetry of rotor windings. When there are broken rotor bars, the magnetomotive force generated by rotor windings is distorted, and some particular harmonics, contained in the voltages induced in the stator windings, increase their amplitudes. The diagnostic technique is based on monitoring these voltage harmonics and analyzing the space vector of the voltages induced in the stator windings via MUSIC pseudospectrum and short-time MUSIC (STMUSIC) time-frequency pseudorepresentation. The MUSIC algorithm is based on the eigen analysis of the autocorrelation matrix, and permits us to evidence the principal harmonic frequencies of the signal and decrease the noise influence, thus allowing a better detection of the broken rotor bars. The results obtained using MUSIC and STMUSIC algorithm have been compared experimentally with those obtained by fast Fourier transform (FFT) and short-time FFT, respectively, and two different sized induction motors have been tested, to demonstrate the superiority of the former approach. Differently from most of the diagnostic techniques already proposed in the technical literature, the proposed approach is effective regardless of the load condition of the machine, source characteristics, and iron saturation.  相似文献   

8.
This paper deals with a rotor temperature estimation scheme for fan-cooled mains-fed squirrel-cage induction motors. The proposed technique combines a rotor resistance estimation method with a thermal equivalent circuit. Usually, rotor resistance estimation works quite well under rated load conditions. By contrast, if the motor is slightly loaded, rotor resistance estimation becomes inaccurate due to the small slip. Therefore, rotor temperature estimation under low-load conditions may be estimated by a thermal equivalent model. In order to determine the rotor resistance and, thus, rotor temperature accurately, several machine parameters have to be obtained in advance. Load tests provide the leakage reactance and the iron losses of the induct machine. The stator resistance has to be measured separately. The parameters of the thermal equivalent model are a thermal resistance and a thermal capacitance. These parameters are derived from a heating test, where the reference temperature is provided from the parameter model in the time domain. This lumped thermal parameter model is based on the assumption that the total rotor temperature increase is caused by the total sum of the losses in the induction machine. Measuring results of a 1.5-kW and an 18.5-kW four-pole low-voltage motor and a 210-kW four-pole high-voltage motor are presented and compared.  相似文献   

9.
This paper proposes a new method for behavioral modeling of a permanent magnet synchronous motor (PMSM) fed by a PWM inverter considering the iron losses due to carrier harmonics. In the proposed method, an inductance is connected in series with an iron loss resistance in the equivalent circuit of the PMSM to suppress the harmonic current due to carrier harmonics. The effectiveness of the proposed method is investigated by comparing the numerical results of iron losses of the PMSM obtained using a finite-element method and the newly derived equivalent circuit.  相似文献   

10.
This paper presents a new analytical technique for improving the performance prediction of single-phase induction motors, especially capacitor motors. The technique uses the split-phase motor electrical equivalent circuit analysis together with electrical and magnetic parameters whose variation is computed from the equivalent balanced polyphase motor, so that the same magnetic circuit analysis can be used for both. (The term split-phase is used to cover motors operating from a single-phase supply but with the phase windings split into two orthogonal windings, one of which may have a capacitor in series with it during running or starting.) The technique accounts for the elliptical envelope of the magnetizing field vector and results in improved precision, since the three-phase electromagnetic model is considered to be more precise than the normal split-phase motor analysis. An important result is the computation of vector polygons of flux density for each section of the magnetic circuit, providing a better basis for core loss prediction. The double-frequency torque ripple is also obtained from the stator magnetomotive force and flux-density polygons. Three different electrical equivalent circuit methods for the split-phase motor (based respectively on the cross-field theory, forward- and backward-revolving fields, and symmetrical components) are evaluated to determine the method best suited for incorporating the variation of the circuit parameters from the polyphase magnetic circuit analysis, and it is discussed how the core losses can be included in these circuits to obtain the best overall performance prediction.  相似文献   

11.
分数槽集中式绕组(FSCW)存在谐波含量大的缺点,易引起定转子铁心损耗和振动噪声问题,限制了其在高端领域的应用。以采用FSCW的12槽14极永磁同步电机(PMSM)为研究对象,使用有限元软件进行仿真,分析定子非绕线齿中的磁障对磁动势谐波、电磁转矩、铁心损耗及径向电磁力的影响,并与传统永磁电机进行对比。仿真结果表明,采用定子磁障的电机能够有效降低绕组磁动势低次谐波,1、3、5次谐波分别下降了87%、84%和30%,铁心损耗减小了21.1%,低阶径向电磁力减小了20%以上,实现了对噪声和振动的有效抑制。  相似文献   

12.
In this paper, we investigate losses, including magnet eddy-current loss of permanent-magnet synchronous motors with concentrated windings. A 3-D finite-element method that considers carrier harmonics of pulsewidth modulation inverters is utilized to calculate the losses in each part of the motor separately. A simple linear magnetic circuit model is also introduced in order to understand the mechanism of eddy-current loss generation in the magnet. First, the measured and calculated results are compared to verify the validity of the analysis. Next, the variation of the losses due to the stator and rotor shapes is investigated, for instance, concentrated and distributed stator windings and interior and surface-mounted permanent magnets. It is clarified that the eddy-current loss of the permanent magnet in the concentrated winding motor is much larger than that in the distributed winding motor. The difference of the loss generation mechanism due to the rotor shape is also clarified.  相似文献   

13.
为抑制切向永磁同步电机的永磁体涡流损耗,基于麦克斯韦方程和本构方程,对永磁体形状进行近似假设,构建了永磁体涡流损耗的估算模型。使用一种基于卡特系数概念的磁导函数来估算由于定子开槽引起的槽下磁感应强度变化。基于五台槽极比分别为1.05、1.20、1.30、2.40和3.60的电机设计方案对理论分析结论进行了验证。在负载电流和两倍负载电流下,分析永磁体损耗,得到了每台电机的径向气隙磁密曲线及其谐波含量。考虑到增加槽极比对定子铁耗和永磁体涡流损耗的削弱效果,给出了电机槽极比选择策略。研究结果表明,增加槽极比能减弱定子槽下磁感应强度变化,从而抑制气隙磁场中低次谐波含量,减小永磁体涡流损耗,使电机运行更加可靠,但也会引入更多高次谐波,从而增加定子铁耗。  相似文献   

14.
In this study, a traction drive electric motor was designed with a new magnet‐free motor design technique where electromagnets are generated on a rotor by utilizing changes in the spatial second harmonic of the magnetic fields. To apply the proposed technique to electric motor design, balancing the rotor and stator magnetomotive force is important. This paper presents design methods for adjusting the rotor and stator magnetomotive forces. A test motor was designed with these design methods and evaluated using a motor bench. The analytical and measurement data indicated that the proposed motor performed comparably to magnet motors.  相似文献   

15.
A novel two-phase switched reluctance machine (SRM) with a stator composed of E-core structure having minimum stator core iron is proposed. The E-core stator has three poles with two poles at the ends having windings and a center pole containing no copper windings. The center stator pole in the E-core is shared by both phases during operation. The air gap around the common stator pole has constant and minimum reluctance irrespective of rotor position by its unique design, and the two remaining stator poles at the ends experience variable reluctance with respect to rotor position. The stator is constructed with two independent and physically separate E-cores, and the rotor is composed of ten poles. Other pole combinations are possible. Phase excitation in the novel SRM gives short flux paths, hence reducing the magnetomotive force required to drive the machine, resulting in significant reduction of copper wire and core losses compared to existing two-phase SRMs with flux paths that traverse the entire stator back iron. The concept and principle of operation of this novel SRM and its comparison to existing two-phase SRMs are detailed in this paper. Comparison between finite-element simulations and magnetic equivalent circuit (MEC) analysis for inductance are made and compared to experimentally measured characteristics. Furthermore, comparisons between a conventional two-phase SRM and the novel SRM are made in terms of its weight and output torque. Manufacturability and cost savings of the unique SRM structure are presented. It is shown that the E-core SRM using common stator pole has 50% less iron in the magnetic path compared to a conventional two-phase SRM.   相似文献   

16.
Induction motors, both three and single phase, are used extensively for adjustable-speed drives' applications. These machines are structurally very robust and are a primary source of motive power and speed control where DC machines cannot be used. For closed-loop control of these machines, sensorless speed estimation is usually preferred. Among the current estimation techniques available for speed-sensorless induction motor drives, speed measurement based on rotor-slot-related harmonic detection in machine line current happens to be a prominent one. While these harmonics can be strong in certain kinds of machines, some other machines may exhibit very weak rotor slot harmonics that can be obscured by noise. Skewing, slot shapes and types, structural unbalances, etc., also have a prominent effect on the detectability of these harmonics. This paper attempts to investigate this problem based on the interaction of pole pairs, number of rotor bars, and stator winding. Although the analysis and experimental results have been mainly provided for three-phase squirrel-cage induction motors, single-phase and slip-ring induction motors have also been addressed. Further, it has been shown that eccentricity-related fault detection could also be easily accommodated with this kind of speed detection technique at no or negligible extra cost when certain motors are selected.  相似文献   

17.
This paper proposes a novel mathematical dynamic model to represent the steady‐state and transient‐state characteristics of rotor slot harmonics of an induction motor for sensorless control. Although it is well known that the rotor slot harmonics originate from the mechanical structure of the induction motor, a mathematical model that describes the relationship between the stator/rotor currents of the induction motor and the slot harmonics has not yet been proposed. Therefore, in this paper, a three‐phase model of the induction motor that depicts the rotor slot harmonics is developed by taking into consideration the magnetomotive force harmonics and the change in the magnetic air gap caused by the rotor slots. The validity of the proposed model is verified by comparing the experimental results and the calculated values. © 2013 Wiley Periodicals, Inc. Electr Eng Jpn, 186(3): 63–74, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22478  相似文献   

18.
左厚贝  张兴华 《微电机》2011,44(8):51-54
建立了考虑铁损时的感应电机数学模型,在分析电机损耗和定子磁链的关系的基础上,提出了一种通过优化定子磁链实现感应电机直接转矩控制变频调速系统的效率最优控制策略。研究了不同负载转矩和转速条件下电机损耗与定子磁链之间关系,推导出电机损耗与负载转矩和定子磁链的表达式,进而确定了损耗极小时的最优定子磁链幅值。仿真结果表明该策略能明显降低感应电机直接转矩控制系统的功率损耗,提高运行效率。  相似文献   

19.
The purpose of this paper is to specify the main components of the stray load loss of induction motors from both results of measurement and analysis. The IEEE standard 112 Method B is applied to the cage induction motor for the measurement of the stray load loss. On the other hand, the losses generated at the stator core, the rotor core, and the rotor cage are calculated directly by the finite-element method considering the magnetic saturation and the harmonic fields, which vary due to the load condition. The measured and the calculated torque, losses, and efficiency agree well. It is clarified that the main parts of the stray load loss in the case of the analyzed motor are the increase of harmonic losses due to load, which are the harmonic Joule losses of the rotor cage and the harmonic core losses of the stator and the rotor. The relationships between the losses separated by the measurement and the losses calculated directly by the finite-element method are also clarified.  相似文献   

20.
This paper presents a novel method for detecting stator winding inter-turn short circuit fault in a three-phase induction motor by vibration signature analysis using non-electrical contact type microelectromechanical systems (MEMS) accelerometer. The present work detects inter-turn short circuit by vibration analysis in a three-phase induction motor running under different load conditions. Theoretical analysis of stator winding under inter-turn short circuit condition has been presented. Experimental investigations have been carried out to detect inter-turn short circuit fault by vibration signature analysis using a MEMS accelerometer with three-phase induction motor operating under different conditions. The spectral analysis of motor vibration has been carried out using radix-2 decimation in time fast Fourier transform algorithm. The appearance of particular characteristic frequency components in vibration spectrum indicates stator winding inter-turn short circuit faults. The experimental results are found to closely match with the theoretical values, indicating that MEMS accelerometers can be successfully employed for the detection of stator winding inter-turn short circuit fault in induction motors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号