首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为提高预抽煤层瓦斯消突效果,文章提出了一种变孔径的钻孔卸压增透技术,并在下山揭煤钻孔中进行了试验研究。通过对已施工好的下向穿层钻孔实施掏穴扩孔后,实际钻进出煤量相应增加,钻孔的卸压影响范围增大,钻孔周围的煤体变形和透气性增大,抽采瓦斯效果显著提高,值得在低透气性高瓦斯突出煤层消突实践中推广应用。  相似文献   

2.
下向穿层钻孔水力冲孔卸压增透强化抽采瓦斯技术研究   总被引:1,自引:0,他引:1  
为提高预抽煤层瓦斯消突效果,本文试验了下向穿层钻孔卸压增透强化抽采技术,并在高抽巷区域预抽钻孔中进行了实践。水力冲孔实施后,钻孔的卸压影响范围增大,钻孔周围的煤体变形和透气性增大,抽采瓦斯效果显著提高。对比水力冲孔前后的钻孔瓦斯压力和抽采量变化表明,水力冲孔影响半径达到10m,有效影响半径大于5m。与水力冲孔钻孔平距2.5m抽采孔,瓦斯抽采纯量增大4.25倍,平距5m~6m抽采孔瓦斯抽采纯量增大1.5倍。水力冲孔卸压增透强化抽采技术卸压增透范围大,提高抽采效果显著,为高突煤层预抽消突提供了一种行之有效的方法,值得在低透气性高瓦斯突出煤层消突实践中推广应用。  相似文献   

3.
4.
高瓦斯突出煤层预抽瓦斯消突是突出矿井煤巷掘进前的主要技术措施。由于我国煤矿煤层透气性低,原始煤层预抽煤层瓦斯效果差,抽放时间长,为提高低透气性高瓦斯突出煤层的瓦斯抽采效果,在振兴二矿11031下副巷底抽巷对比非增透区试验考察了水力冲孔增透区、水力冲孔+压裂增透区预抽瓦斯效果。试验结果表明,实施水力增透措施后,有效扩大了钻孔抽采瓦斯影响半径,提高了煤层的透气性,增加了瓦斯抽采量,区域瓦斯治理效果明显。  相似文献   

5.
《煤矿开采》2013,(2):88-90
由于我国煤矿煤层透气性低,原始煤层预抽煤层瓦斯效果差,抽放时间长,为提高低透气性高瓦斯突出煤层的瓦斯抽采效果,在振兴二矿11031下副巷底抽巷对比非增透区试验考察了水力冲孔增透区、水力冲孔+压裂增透区预抽瓦斯效果。试验结果表明,实施水力增透措施后,有效扩大了钻孔抽采瓦斯影响半径,提高了煤层的透气性,增加了瓦斯抽采量,区域瓦斯治理效果明显。  相似文献   

6.
穿层钻孔水力化卸压增透技术   总被引:1,自引:0,他引:1  
低透气性煤层瓦斯抽采是我国矿井瓦斯治理的瓶颈所在。近年来水力射流技术在矿井石门揭煤、底板巷消除地应力方面有了很大的发展,因此,开展水力射流技术在本煤层强化瓦斯抽采方面的研究具有重要意义。采用水力射流扩大钻孔的直接影响范围,通过对扰动煤体的体积、表面积、单孔瓦斯抽采量、钻孔影响半径的考察,对比分析了水力射流技术和钻孔抽采技术的数据,得出钻孔直径增大11.7~19.2倍,扰动煤体体积提高3 471~6 971倍;钻孔瓦斯衰减周期延长了7~10倍;单孔抽采效果提高6~8倍。  相似文献   

7.
为了揭示水力造穴参数对钻孔瓦斯抽采效果的影响规律,指导煤层水力造穴增透技术施工参数的合理选择。建立了煤层损伤-应力-渗流耦合模型,分析了不同造穴参数下煤层卸压增透效果,展开了顺层钻孔水力造穴现场工程试验,考察了不同造穴参数下钻孔瓦斯抽采效果,结果表明:采用水力造穴技术形成的孔穴能够有效降低其周围煤体应力,提高煤层渗透率,增加瓦斯钻孔抽采效果;造穴半径越大煤层的卸压程度越大,进而煤层渗透率增幅就越大,但在实际工程中过大的造穴半径会使得孔穴稳定性差,钻孔塌孔堵塞瓦斯涌出通道会使得钻孔瓦斯抽采量有所降低,试验矿井最优造穴半径为0.6 m;造穴间距对它们之间的应力降低区范围有着较大的影响,在一定距离条件下孔穴卸压有着明显的叠加效应,造穴间距越近叠加效应越明显,煤层应力越小,卸压增透效果越好。试验钻孔穴间距由8 m减小到6 m时,单孔平均瓦斯抽采纯量增加389.16%。  相似文献   

8.
针对普通穿层钻孔条带布置掩护煤巷掘进增透效果差、卸压不充分的问题,提出了穿层钻孔割缝组合强化增透技术,研究了其增透机制,并进行了现场应用。研究结果表明,穿层割缝钻孔和普通穿层钻孔的卸压带相互贯通形成整体卸压,显著降低控制区域内煤体应力,强化增透效果更为明显。现场试验结果表明,采用该技术措施后,抽采平均纯瓦斯流量提高了3.42倍,瓦斯涌出初速度平均降低了27.0%、钻屑量平均降低了3.2%,未出现超标现象,达到了消突的目的。  相似文献   

9.
通过对矿井不同生产条件的穿层钻孔、顺层钻孔卸压瓦斯抽采消突技术的探索及应用,消除了采掘工程中的瓦斯突出和瓦斯超限,确保了矿井安全生产。  相似文献   

10.
田坤云 《煤炭技术》2015,34(1):243-245
编制了临焕煤矿2个穿层压裂钻孔的压裂方案,包括压裂孔的设计、压裂设备的安装调试以及压裂钻孔的施工;提出了2个压裂钻孔现场进行水力压裂后对其压裂效果考核的指标,包括自然瓦斯流量、瓦斯流量衰减系数、钻孔抽采流量及浓度;通过现场效果考察,得出软煤层施工钻孔进行水力压裂增透是不可行的,在工程实践中印证了"硬煤可压、软煤不可压"的结论;针对软煤不可压这一定论,提出了转移压裂对象即采取"坚硬顶板压裂"来解决松软煤层卸压增透的这一难题,并且从理论上对"坚硬顶板压裂"的卸压增透机理进行了分析。  相似文献   

11.
大直径高位钻孔代替高抽巷抽采瓦斯的研究   总被引:7,自引:0,他引:7  
针对高抽巷施工工程量大、投入大的问题,在沙曲矿24207综采工作面进行了大直径高位钻孔替代高抽巷的试验,对二者的抽采效果进行了对比分析。高位钻孔抽采瓦斯效果达到了高抽巷抽采瓦斯的效果,且高位钻孔呈扇形布置,能扩大抽采范围,延长瓦斯抽采服务时间,提高瓦斯抽采率,将工作面回风瓦斯体积分数控制在0. 33%左右。应用结果表明用大直径高位钻孔代替高抽巷进行瓦斯抽采是可行的。  相似文献   

12.
低透气性煤层钻孔瓦斯运移及抽放参数研究   总被引:2,自引:1,他引:2  
运用瓦斯流动理论和岩土力学相关理论,研究深部煤层受采动影响后渗透特性变化情况及规律。依据淮南矿区某矿井地质情况,通过现场实测瓦斯基础参数,建立数学模型、实验室数值模拟等手段,综合分析钻孔瓦斯流量衰减规律,确定了研究矿井煤层钻孔有效影响半径和合理抽放时间,为实现煤与瓦斯安全高效共采提供了依据。  相似文献   

13.
大直径顺层长钻孔预抽瓦斯消突效果分析   总被引:1,自引:0,他引:1  
针对淮南矿区丁集煤矿11-2煤层以地应力为主导作用的压出类型的突出特征,以及煤巷掘进速度慢的问题,提出了大直径顺层长钻孔预抽瓦斯消突技术,采取该措施进行抽放后,效检超标率仅为5.38%,平均瓦斯体积分数为0.1%左右,最高不超过0.4%;另外通过施工长钻孔,基本能探出工作面前方落差小于3 m的较小断层,避免了一定的地质风险,平均月掘进进尺达170 m以上,最高可达212 m,缓解了采掘接替紧张的难题.  相似文献   

14.
为了提高松软低透气性煤层的瓦斯抽采效果,针对潘一矿东区1252(1)首采工作面的特点,开展了松软煤层顺层钻孔全程瓦斯预抽技术实践,采取该措施后,单孔瓦斯抽采体积分数由原来的20% ~ 40%提高到90%,瓦斯抽采纯量由原来的0.08 m3/min提高到0.25 m3/min,且最大单孔瓦斯抽采纯量达0.51 m3/min;评价单元瓦斯抽采纯量提升近35%,且流量稳定;单元抽采达标时间由传统预抽工艺的93 d,减少到采用顺层钻孔全程套管预抽瓦斯技术后的26 d,达到了快速消突和均匀消突的目的.  相似文献   

15.
大孔径顺层长钻孔消突技术在潘一矿的应用   总被引:1,自引:0,他引:1  
介绍了大孔径顺层长钻孔消突技术的原理,以潘一矿2371(1)工作面为试验地点,通过测定瓦斯含量、瓦斯预抽率、预测指标和掘进速度等指标,考察了大孔径顺层长钻孔消突技术的预抽放效果和消突效果。应用结果表明:实施大孔径顺层长钻孔消突技术后日常预测和效果检验指标均无超标,瓦斯预抽率在30%以上,残存瓦斯含量4.35~5.05 m3/t,验证无超标,月进尺在94~120 m,实现了突出煤层安全快速掘进与高效回采。  相似文献   

16.
针对嘉禾县罗卜安煤矿煤层松软低透气性的现状,选择了水力冲孔增透措施,介绍了水力冲孔增透机理及基本工艺流程,研究了水力冲孔在松软低透突出煤层区域抽放消突措施中的应用效果。研究表明,水力冲孔在松软低透突出煤层区域抽放消突措施中应用效果显著,单孔冲出煤体7t,冲出瓦斯558.3m^3,抽放钻孔等效孔径提高13.38倍,钻孔抽放有效影响半径提高2~3倍,单孔瓦斯预抽浓度提高4~5倍,抽放衰减周期提高3倍以上。  相似文献   

17.
煤矿井下水力压裂增透抽采机理及应用研究   总被引:3,自引:0,他引:3  
通过借鉴地面水力压裂技术的成功模式,研究了煤矿井下水力压裂增透抽采机理,针对单一、低渗高突煤层的特点,研发了一套井下压裂增透抽采技术及装备,并进行了工业性试验。应用效果表明:通过井下对煤体进行水力压裂,中平能化十矿24110工作面煤层渗透率提高了800倍,单孔瓦斯抽放量提高了120倍;鹤壁六矿2115运输巷掘进期间水力压裂后突出危险性效检指标超标率显著下降,瓦斯体积分数普遍降到临界值0.8%以下,大幅降低了煤与瓦斯突出危险性。  相似文献   

18.
突出煤层穿层钻孔群增透增流作用机制   总被引:4,自引:0,他引:4  
为提高突出煤层的预抽瓦斯效果,提出了穿层钻孔群增透增流技术,研究了其增透增流作用机制.研究结果表明,穿层钻孔群排出煤体,内部含瓦斯煤体卸压、膨胀、变形,裂隙扩展、贯通、扩容,渗透性平均可提高150倍.裂隙系统深入煤体内部,变相延伸了钻孔长度,瓦斯流动模式发生根本性的改变,抽采流量平均可提高4倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号