首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
铸态304L奥氏体不锈钢等径角挤压变形研究   总被引:2,自引:0,他引:2  
 研究了铸态304L奥氏体不锈钢在等径角挤压(ECAP)变形过程中显微组织的演变过程。结果表明,经4道次剪切变形后树枝晶破碎、原始粗大晶粒碎化。显微组织的变化过程可归纳为:原始粗晶粒→晶粒被滑移带分割→位错发展形成高密度位错墙,与滑移带共同作用形成胞块结构→应变增加形成层片状界面→形成大角度晶界的细小晶粒。表明铸态304L奥氏体不锈钢经ECAP变形后塑性变形机制主要由滑移完成。  相似文献   

2.
304L超低碳奥氏体不锈钢由25kg真空感应炉冶炼,用透射电镜(TEM)研究了该钢铸态组织200℃等径角挤压变形(ECAP)后组织演变和铸态组织1道次ECAP+1150℃1.5 h,AC处理(固溶组织)再进行ECAP后的组织。结果表明,304L钢铸态组织1道次ECAP变形过程中主要的变形机制为滑移变形,同时出现少量的孪晶变形;304L钢固溶组织在ECAP变形过程中孪晶变形数量急剧增加,孪晶和滑移共同进行,细化原始晶粒组织演变。  相似文献   

3.
等径弯曲通道变形对超低碳钢组织及性能的影响   总被引:1,自引:0,他引:1  
 研究了室温下C方式等径弯曲通道变形(ECAP)对超低碳钢组织及性能的影响。结果表明:第1道次ECAP变形后,组织细化效果最显著;随变形道次的增加,组织由取向差小的板条状亚晶演变成取向差大的等轴晶;第4道次ECAP变形后,晶粒平均尺寸约03 μm;变形道次继续增加,晶粒尺寸变化不显著,而晶粒取向差不断增大。这表明第4道次ECAP变形为超低碳钢细化极限;ECAP变形可大幅度提高超低碳钢的强度,并保持较高的塑性。  相似文献   

4.
选取热轧退火态的工业纯钛(CP-Ti)板材为研究对象,采用通道夹角Φ=135°的模具,在室温下进行CP-Ti板状试样1~8道次等径弯曲通道变形(ECAP),利用金相显微镜(OM)和透射电镜(TEM)观察并分析了纯钛板材在不同道次变形后的组织演变过程。通过力学性能测试实验,分析了X,Y,Z面硬度的变化过程,研究了ECAP变形对CP-Ti力学性能的影响规律。结果表明:CP-Ti板材经过ECAP变形,晶粒逐渐拉长,组织位错大量增加,出现板条状组织;8道次ECAP变形后CP-Ti板材的晶粒明显细化,晶粒尺寸由原始的57.000μm细化到0.668μm;随着挤压道次的增加,组织位错逐渐消失,小角度晶界逐渐转变为大角度晶界,晶粒越来越细,最终达到纳米级别。CP-Ti板材1道次ECAP变形后硬度变化程度最大,X,Y,Z面的硬度增幅分别达32.6%,33.8%和32.9%;随着道次增加,8道次ECAP变形后,力学性能显著提高,X,Y,Z面的硬度最终达到1910,1943和1911 MPa。  相似文献   

5.
用等径角挤压变形法进行奥氏体不锈钢锭开坯的研究   总被引:1,自引:0,他引:1  
杨钢  吕惠生  邓波  王立民  刘正东 《钢铁》2008,43(2):77-80
对铸态奥氏体不锈钢的等径角挤压变形(ECAP)试样进行了高温固溶处理,并与锻造试样 固溶处理后的组织、性能进行了对比,研究表明:室、高温ECAP试样在1150℃固溶处理后均可得到完全再结晶组织;增加ECAP道次对完全再结晶后的晶粒尺寸影响不大,但略微增加晶粒尺寸的均匀性;铸态奥氏体不锈钢采用ECAP 固溶处理新工艺后,可以获得与锻造 固溶处理工艺类似的组织、力学性能,有可能实现铸锭的开坯.  相似文献   

6.
刘晓燕  强萌  杨西荣  罗雷 《稀有金属》2023,(10):1352-1358
室温下对纯钛进行多道次等径弯曲通道变形(ECAP),分别采用光学显微镜(OM)、透射电镜(TEM)、电子背散射衍射仪(EBSD)、室温拉伸和显微硬度观察,测试纯钛变形过程组织演变和力学性能变化规律,探讨纯钛室温变形机制和孪生行为。结果表明,纯钛ECAP变形过程中出现■拉伸孪晶和■压缩孪晶,随着挤压道次的增大,孪晶数量先增大后减小。孪晶的出现有效改变晶格取向,激发进一步位错滑移,辅助塑性变形过程,使纯钛显微组织有效细化,经过4道次ECAP变形,平均晶粒尺寸由约63.79μm细化至约2.81μm。1道次变形后晶粒细化效果最显著,平均晶粒尺寸比变形前减小约94%;随着变形道次的增加,晶粒细化效果减弱,4道次变形后平均晶粒尺寸累积减小约95.6%。同时,大量位错、孪晶和亚晶的形成,使得位错、孪晶以及亚晶之间的相互作用加强,显著提高了纯钛的屈服强度和显微硬度,4道次变形后,屈服强度从215 MPa增加到600 MPa,增幅为179%;显微硬度从HV 129增加到HV 200。由于1道次变形后晶粒细化效果最显著,并且出现大量孪晶和位错,屈服强度与硬度的增幅也最大。  相似文献   

7.
热加工对铸造AM50镁合金显微结构和力学性能的影响   总被引:4,自引:0,他引:4  
采用锻造和等通道转角挤压(ECAP)等技术研究了热加工对铸造AM50镁合金显微结构和力学性能的影响, 以改善该合金的力学性能.结果发现, ECAP对铸造AM50镁合金和锻造AM50镁合金两种显微结构的影响不同, 这是由于两种状态初始晶粒尺寸不同引起的.铸态AM50镁合金晶粒尺寸粗大, 经过ECAP工艺后, 晶界上出现大量平直滑移线;而锻态AM50镁合金经过ECAP工艺后, 晶粒进一步细化, 滑移线痕迹不明显.铸态AM50镁合金经过ECAP工艺后显微硬度从54.5提高到72.3, 锻造AM50镁合金经过ECAP工艺后显微硬度从60.3提高到81.9.铸造AM50镁合金经过锻造及ECAP工艺热加工后力学性能抗拉强度提高到320 Mpa, 同时延伸率保持在35%以上.  相似文献   

8.
在中温550℃对Ti-25 at.%Nb合金进行ECAP挤压4道次处理后,合金的微观组织为拉长晶粒,不能得到细小的等轴晶粒。挤压温度降低至400℃,ECAP挤压后合金的晶粒可得到明显细化,其中,经过2道次ECAP挤压后,微观组织以拉长态的晶粒为主,局部区域出现晶粒尺寸约为500 nm的细小等轴晶粒;在400℃经过ECAP挤压4道次,组织进一步细化为200~300 nm等轴细小晶粒。  相似文献   

9.
采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和室温拉伸力学性能测试等手段研究了Y元素对超高强Al-9Zn-2.5Mg-2Cu(wt.%)合金铸态和T6热处理态微观组织和力学性能的影响。结果表明:Y元素的添加能够细化铸态合金晶粒,降低晶界第二相的连续性;经轧制变形和T6热处理后,随着Y元素含量的提高,合金的强度呈先升高后降低的趋势。当Y元素添加量为0.2%时,性能优秀,其屈服强度为590.1 MPa,极限抗拉强度为622.7 MPa,伸长率为10.44%。  相似文献   

10.
随着炼钢工艺的不断进步,需要细化铸钢中极为粗大的奥氏体显微组织。利用热加工模拟装置研究了经动态再结晶后的HSLA钢中铸态奥氏体的晶粒细化情况。试样取自某钢厂提供的扁铸坯和热轧钢板(0.09%C-1.14%Mn-2.26%Ni-0.54%Mo-0.045%V钢)以及试验室热钢锭(0.14%C—1.45%Mn和0.14%Mn—0.018%Ti钢)。用热压缩试验研究了真实应力-应变曲线和动态再结晶晶粒度随变形温度、变形率和初始r晶粒度变化的关系。试验证实,铸态钢中的动态再结晶的晶粒度完全由稳流应力或Zener—Hollomon参数决定,但不受初始晶粒度的影响。0.09%C-2.26%Ni—Mo—V铸态钢的奥氏体晶粒度随再加热温度的变化很小,而铸态含Ti钢中的流变应力则比该钢种或C—Mn钢热轧板的流变应力高得多。这些似乎分别是由因富集C或合金元素的枝晶间相引起的抑制晶粒长大以及高硬度微观偏析区扩散而造成的。最后,在悬熔熔化和凝固后,进行了直接热变形试验。试验中,含Ti钢从1743K被再加热至1773K,并于1523K时由拉伸应变而变形。试验结果证实,经过动态再结晶后,原本以亳米为单位的极粗的r晶粒度可以细化到130~170μm。  相似文献   

11.
研究1000MPa的双相钢(DP钢)在室温下的准静态拉伸行为与应变速率(10^-2、10^-1、10^-1s^-1)的关系。结果表明,在准静态拉伸条件下,DP钢的拉伸性能是与应变速率相关的。随着应变速率提高,材料的屈服强度、抗拉强度、屈强比和加工硬化指数明显升高,而均匀伸长率、断裂伸长率略有下降;另外,应变速率对材料的...  相似文献   

12.
设计了不同相构成的超高强DH钢,抗拉强度均大于1300 MPa,组织由铁素体、马氏体、残留奥氏体和极少量碳化物构成。对比了不同相构成对超高强DH钢力学性能和应变硬化行为等的影响,并深入研究了残留奥氏体在超高强度DH钢中的作用机制。结果表明:随着马氏体和残留奥氏体体积分数的增大,铁素体体积分数的减小,实验钢屈服和抗拉强度同时升高,而延伸率呈先增大后减小趋势。软韧相铁素体体积分数的减小和硬相马氏体体积分数的增大导致屈服强度和抗拉强度增加。相对于回火马氏体,淬火马氏体对强度的提升更显著,在拉伸过程中转变的残留奥氏体的量是引起延伸率变化的主要原因,组织中显著的带状组织会造成颈缩后延伸率的明显降低。通过对应变硬化行为的分析表明,随着真应变的增大,应变硬化率呈减小的趋势,在真应变大于2%后的大范围内,对于应变硬化率,DH1>DH2>DH3,主要与铁素体体积分数有关;在真应变大于5.73%后,DH2钢的应变硬化率高于DH1钢和DH3钢,主要与DH2钢中更显著的TRIP效应有关。除了残留奥氏体体积分数,残留奥氏体中的碳含量对TRIP效应同样有显著的影响。较高比例的硬相马氏体组织结合适当比例的软韧相铁素体和残留奥氏体有助于DH2钢获得最良好的强塑积13.17 GPa·%,其中屈服强度达880 MPa,抗拉强度达1497 MPa,均匀延伸率为6.71%,总伸长率为8.8%,颈缩后延伸率为2.09%,屈强比0.59。   相似文献   

13.
The feasibility of using the Repetitive Bending and Straightening (RBS) process to improve the mechanical properties of commercial purity aluminium has been investigated. RBS was carried out by bending with a U-bending die of 10 mm radius followed by straightening between flat dies. The ultimate tensile strength (UTS) and yield strength (YS) slightly increased with increasing number of passes. The maximum UTS of 84 MPa and YS of 68 MPa were obtained after four passes and % elongation to failure decreased from 46% to 35% after four passes. The RBS processed Al showed poor improvement in mechanical properties as compared to other SPD processes. Repetitive bending and straightening process is therefore not an effective process to introduce fine grained structures in metals or alloys.  相似文献   

14.
Ultrafine-grained dual phase microalloyed V-Nb steel with ultimate tensile strength of 1371 MPa and uniform elongation of 16 pct characterized by bimodal ferrite grain structure was obtained through warm rolling and subsequent intercritical annealing. The bimodal ferrite grain structure with uniform dispersion of Nb/V carbides and strong γ-fiber texture promoted high strain hardening rate and high uniform elongation and high strength is attributed to ultrafine-grained ferrite and martensite.  相似文献   

15.
蒋爱娟  祝贞凤  高千林  李辉 《钢铁》2019,54(10):80-84
 为了研究不同淬火制度对汽车用高强Q&P钢配分过程微观组织演变和力学性能的影响,利用激光共聚焦显微镜(LSCM)、环境扫描电子显微镜(SEM)和X射线衍射仪(XRD)表征了不同工艺状态后的微观组织,测试了力学性能,分析了加工硬化速率变化规律。试验结果表明,完全奥氏体化处理后立即进行Q&P处理,可以得到最高的屈服强度和抗拉强度,分别达到了1 185和1 315 MPa,屈强比最高;奥氏体化后慢速冷却至两相区生成一定的铁素体,Q&P处理后得到最高的伸长率为28%和强塑积为29.5 GPa·%。加工硬化速率的变化过程分为3个阶段,即屈服点前急剧降低的阶段Ⅰ,TRIP效应发生过程的缓慢降低阶段Ⅱ,快速下降直至材料断裂的阶段Ⅲ。Q&P热处理淬火配分前的初始微观组织状态,决定了淬火和配分过程的相演变和元素再分配过程。经工艺2处理后的残留奥氏体体积分数最高,达到12.2%,具有最高的伸长率和强塑积。  相似文献   

16.
An innovative method called semi-continuous equal-channel angular extrusion(SC-ECAE)has been developed to produce ultrafine grained steel by inducing severe plastic deformation.In contrast to the external forces that are exerted on specimens in traditional ECAE,the driving forces are applied on the dies in the novel SC-EACE process.Commercial interstitial-free steel sheets with width of 160 mm and thickness of 2 mm were processed repeatedly to various passes at room temperature using this method.The microstructural evolution was characterized using high-resolution electron backscatter diffraction(EBSD),and the mechanical properties were investigated by tensile testing.The EBSD images indicated that the fraction of high-angle boundaries(HABs)began to increase gradually after four passes;after six passes,elongated HAB structures with nearly submicron-scale average spacings were formed.The tensile testing results showed that strengthening was accompanied by a decrease in tensile ductility,but no significant anisotropy was observed.After 10 passes,a final HAB fraction of about 90% and an overall grain size of 0.55μm,yield strength of 638.7 MPa,an ultimate tensile strength(UTS)of 710.3 MPa,and a total elongation of 12.0% were obtained.  相似文献   

17.
The effects of solution and ageing treatment (T6) on microstructure and tensile properties of as - extruded Mg- 10Gd-3Y-0.6Zr (mass fraction. % ) alloy were investigated. The results show that after T6 treatment, the diameter of grain increases to 20 μm. As the second phases dissolve into the matrix, the smaller and denser β phases precipitate inside the grains. After T6 -treatment, both yield strength (TYS) and ultimate tensile strength (UTS) are increased. Comparing with that in only ageing condition (T5), the UTS and TYS increased from 365 MPa, 285 MPa to 400 MPa, 310 MPa, respectively, but the elongation decreased from 7.0% to 3.5%. It has been found that the effects of precipitates on the strength are stronger than that of the growth of grain size.  相似文献   

18.
In this work, a surface mechanical attrition treatment (SMAT) process was applied to AZ31B magnesium alloy at room temperature. This method produced a gradient structure on the treated AZ31B, in which the grains of the topmost layer are refined to nanoscale sizes. A combination of nanocrystallites at the surface and coarse-grains in the center are the main features of this structure. This structure results in an excellent combination of both strength and ductility. The highest yield strength for the 30 minutes SMAT AZ31B samples increased to 249 ± 5 MPa and the uniform elongation decreased to 9.3 ± 0.8 pct, whereas the original yield strength was only 147 ± 4 MPa and the uniform elongation was 15.4 ± 1.1 pct. Microstructural observations, stress relaxation tests, and hardness tests were used to verify the results. Additionally, there is a specific volume fraction of gradient structure to achieve the best mechanical performance, which is shown to be in the range of 9.3 to 14 pct for the AZ31B alloy.  相似文献   

19.

The microstructure and mechanical behavior of low-carbon ultrafine grain steel (UFG; 0.165 wt pct carbon) after niobium (Nb) addition were investigated. It was found that the addition of 0.028 wt pct of Nb resulted in the optimal tensile strength of 990.8 MPa with an adequate elongation of 15.5 pct. In comparison to the normal UFG steel (without Nb), the strength of Nb-UFG steel was substantially enhanced without any sacrifice of its elongation. The main increased strengthening mechanisms of Nb-UFG steel were precipitation and dislocation strengthening. The improved work hardening and adequate elongation of Nb-UFG steel could be ascribed to geometrically necessary dislocations and heterogeneous ferrite grains. Discontinuous static recrystallization occurred by a small rolling reduction on hardened martensite laths, resulting in the formation of heterogeneous ferrite grains. Ultrafine ferrite grains were surrounded by high-angle grain boundaries, and nanoscale Nb(C, N) carbonitrides providing precipitation strengthening were precipitated mainly in the α-phase.

  相似文献   

20.
With an aim to elucidate the influence of temperature and grain size on austenite stability, a commercial cold-rolled 7Mn steel was annealed at 893 K (620 °C) for times varying between 3 minutes and 96 hours to develop different grain sizes. The austenite fraction after 3 minutes was 34.7 vol pct, and at longer times was around 40 pct. An elongated microstructure was retained after shorter annealing times while other conditions exhibited equiaxed ferrite and austenite grains. All conditions exhibit similar temperature dependence of mechanical properties. With increasing test temperature, the yield and tensile strength decrease gradually, while the uniform and total elongation increase, followed by an abrupt drop in strength and ductility at 393 K (120 °C). The Olson–Cohen model was applied to fit the transformed austenite fractions for strained tensile samples, measured by means of XRD. The fit results indicate that the parameters α and β decrease with increasing test temperature, consistent with increased austenite stability. The 7Mn steels exhibit a distinct temperature dependence of the work hardening rate. Optimized austenite stability provides continuous work hardening in the temperature range of 298 K to 353 K (25 °C to 80 °C). The yield and tensile strengths have a strong dependence on grain size, although grain size variations have less effect on uniform and total elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号