首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
We have studied the kinetics of electrochemical lithium intercalation and deintercalation processes at different currents in lithium iron phosphate and lithium titanate based composite materials containing fine carbon particles. The results demonstrate that lithium intercalation and deintercalation processes in the electrode materials are characterized by an overvoltage: 4 and 2 mV, respectively, for a cell with a lithium titanate based electrode and 4 and 24 mV for a lithium iron phosphate based cell. Li4Ti5O12 solubility in Li7Ti5O12 is 1.1% (the limit of the solid solution at Li4.03Ti5O12), and Li7Ti5O12 solubility in Li4Ti5O12 is 2.5% (the limit of the solid solution at Li6.93Ti5O12). The conductivity of the phosphate and titanate solid solutions involved in the lithium intercalation and deintercalation processes has been determined.  相似文献   

2.
Li4Ti5O12/Sn nano-composites have been prepared as anode material for lithium ion batteries by high-energy mechanical milling method. Structure of the samples has been characterized by X-ray diffraction (XRD), which reveals the formation of phase-pure materials. Scanning electron microscope (SEM) and transmission electron microscope (TEM) suggests that the primary particles are around 100 nm size. The local environment of the metal cations is confirmed by Fourier transform infrared (FT-IR) and the X-ray photoelectron spectroscopy (XPS) confirms that titanium is present in Ti4+ state. The electrochemical properties have been evaluated by galvanostatic charge/discharge studies. Li4Ti5O12/Sn-10% composite delivers stable and enhanced discharge capacity of 200 mAh g−1 indicates that the electrochemical performance of Li4Ti5O12/Sn nano-composites is associated with the size and distribution of the Sn particles in the Li4Ti5O12 matrix. The smaller the size and more homogeneous dispersion of Sn particles in the Li4Ti5O12 matrix exhibits better cycling performance of Li4Ti5O12/Sn composites as compared to bare Li4Ti5O12 and Sn particles. Further, Li4Ti5O12 provides a facile microstructure to fairly accommodate the volume expansion during the alloying and dealloying of Sn with lithium.  相似文献   

3.
Reactive and non-reactive grinding has been used to prepare high dispersed lithium-transition metal cathode materials (LiMn2O4, LiCoO2, LiV3O8, Li3Fe2(PO4)3, LiTi2(PO4)3) and inorganic solid state Li-ion electrolytes (Li1.3Al0.3Ti1.7(PO4)3) for rechargeable lithium batteries. Submicron particle size and the presence of cationic vacancies and cationic disordering positively influence electrochemical properties of as prepared cathodes, leading to larger practical capacity and stability upon intercalation-deintercalation of lithium ions. However, the advantages are observed only when the first electrochemical step is an insertion of Li+ ions (Li battery discharge). The conductivity of the Li1.3Al0.3Ti1.7(PO4)3 lithium ion electrolyte prepared by using MA was of 2-3 order of magnitude higher than that for nonactivated sample owing to the absence of non-conductive impurities and lower grain boundary resistance.  相似文献   

4.
Specialized hardware for neural networks requires materials with tunable symmetry, retention, and speed at low power consumption. The study proposes lithium titanates, originally developed as Li-ion battery anode materials, as promising candidates for memristive-based neuromorphic computing hardware. By using ex- and in operando spectroscopy to monitor the lithium filling and emptying of structural positions during electrochemical measurements, the study also investigates the controlled formation of a metallic phase (Li7Ti5O12) percolating through an insulating medium (Li4Ti5O12) with no volume changes under voltage bias, thereby controlling the spatially averaged conductivity of the film device. A theoretical model to explain the observed hysteretic switching behavior based on electrochemical nonequilibrium thermodynamics is presented, in which the metal-insulator transition results from electrically driven phase separation of Li4Ti5O12 and Li7Ti5O12. Ability of highly lithiated phase of Li7Ti5O12 for Deep Neural Network applications is reported, given the large retentions and symmetry, and opportunity for the low lithiated phase of Li4Ti5O12 toward Spiking Neural Network applications, due to the shorter retention and large resistance changes. The findings pave the way for lithium oxides to enable thin-film memristive devices with adjustable symmetry and retention.  相似文献   

5.
The effect of Li4Ti5O12 (LTO) coating amount on the electrochemical cycling behavior of the LiCoO2 cathode was investigated at the high upper voltage limit of 4.5 V. Li4Ti5O12 (≤5 wt.%) is not incorporated into the host structure and leads to formation of uniform coating. The cycling performance of LiCoO2 cathode is related with the amount of Li4Ti5O12 coating. The initial capacity of the LTO-coated LiCoO2 decreased with increasing Li4Ti5O12 coating amount but showed enhanced cycling properties, compared to those of pristine material. The 3 wt.% LTO-coated LiCoO2 has the best electrochemical performance, showing capacity retention of 97.3% between 2.5 V and 4.3 V and 85.1% between 2.5 V and 4.5 V after 40 cycles. The coulomb efficiency shows that the surface coating of Li4Ti5O12 is beneficial to the reversible intercalation/de-intercalation of Li+. LTO-coated LiCoO2 provides good prospects for practical application of lithium secondary batteries free from safety issues.  相似文献   

6.
Pure and metal (Cu, Al, Sn, and V)-doped Li4Ti5O12 powders are prepared with solid-state reaction method. The effects of dopants on the physical and electrochemical properties are characterized by using TGA, XRD, and SEM. Compared with pure Li4Ti5O12, metal-doped Li4Ti5O12 powders show structural stability and enhanced lithium ion diffusivity brought by doped metal ions. Voltage characteristics and initial charge–discharge characteristics according to the C rates in pure and metal-doped Li4Ti5O12 electrode materials are studied. Pure Li4Ti5O12 powder shows a relatively good discharge capacity of 164 mAh/g at a rate 0.2C, and some of metal-doped Li4Ti5O12 powders show higher discharge capacities. Metal-doped Li4Ti5O12 powders are promising candidates as anode materials for lithium-ion batteries.  相似文献   

7.
We have prepared and characterized lithium titanate-based anode materials, Li4Ti5O12/C and Li4Ti5O12/C/Ag, using polyvinylidene fluoride as a carbon source. The formation of such materials has been shown to be accompanied by fluorination of the lithium titanate surface and the formation of a highly conductive carbon coating. The highest electrochemical capacity (175 mAh/g at a current density of 20 mA/g) is offered by the Li4Ti5O12-based anode materials prepared using 5% polyvinylidene fluoride. The addition of silver nanoparticles ensures a further increase in electrical conductivity and better cycling stability of the materials at high current densities.  相似文献   

8.
Li2Ti3O7 with the ramsdellite-type structure undergoes lithium insertion reactions with n-BuLi. Li2+xTi3O7 phases form with x = 0.5 and 1.0 at room temperature and at 50°C, respectively. The ESR spectrum of Li3Ti3O7 confirms the partial reduction of Ti4+ ions to Ti3+. The electrical conductivity of the fully lithiated phase is several orders of magnitude higher than that of the host compound, suggesting charge hopping in the mixed valent lithiated compound.  相似文献   

9.
Ti–Nb–O binary oxide materials represent a family of promising intercalating anode materials for lithium‐ion batteries. In additional to their excellent capacities (388–402 mAh g–1), these materials show excellent safety characteristics, such as an operating potential above the lithium plating voltage and minimal volume change. Herein, this study reports a new member in the Ti–Nb–O family, Ti2Nb14O39, as an advanced anode material. Ti2Nb14O39 porous spheres (Ti2Nb14O39‐S) exhibit a defective shear ReO3 crystal structure with a large unit cell volume and a large amount of cation vacancies (0.85% vs all cation sites). These morphological and structural characteristics allow for short electron/Li+‐ion transport length and fast Li+‐ion diffusivity. Consequently, the Ti2Nb14O39‐S material delivers significant pseudocapacitive behavior and excellent electrochemical performances, including high reversible capacity (326 mAh g?1 at 0.1 C), high first‐cycle Coulombic efficiency (87.5%), safe working potential (1.67 V vs Li/Li+), outstanding rate capability (223 mAh g–1 at 40 C) and durable cycling stability (only 0.032% capacity loss per cycle over 200 cycles at 10 C). These impressive results clearly demonstrate that Ti2Nb14O39‐S can be a promising anode material for fast‐charging, high capacity, safe and stable lithium‐ion batteries.  相似文献   

10.
In this study, we have introduced the layered materials P2-Na0.66LixMn0.5Ti0.5O2 as cathode materials for sodium ion batteries (SIBs), and then P2-Na0.66LixMn0.5Ti0.5O2 was employed as bi-functional electrode in SIBs. The structural stability and electrochemical properties of P2-Na0.66LixMn0.5Ti0.5O2 were promoted by inserting lithium. The Na0.66Li0.2Mn0.5Ti0.5O2 as a cathode material can exhibit a reversible discharge capacity of 128?mA?h?g?1 at 0.1C after 100 cycles, and even deliver 72?mA?h?g?1 at 5C. Interestingly, the P2-Na0.66Li0.2Mn0.5Ti0.5O2 is studied as a “bi-functional” active material for symmetric sodium-ion batteries. This novel symmetric full cell exhibits 65?mA?h?g?1 at a current density of 20?mA?g?1.  相似文献   

11.
Nanosized bismuth titanate was prepared via high-energy ball milling process through mechanically assisted synthesis directly from their oxide mixture of Bi2O3 and TiO2. Only Bi4Ti3O12 phase was formed after 3 h of milling time. The excess of 3 wt% Bi2O3 added in the initial mixture before milling does not improve significantly the formation of Bi4Ti3O12 phase comparing to stoichiometric mixture. The formed phase was amorphized independently of the milling time. The Rietveld analysis was adopted to determine the crystal structure symmetry, amount of amorphous phase, crystallite size and microstrains. With increasing the milling time from 3 to 12 h, the particle size of formed Bi4Ti3O12 did not reduced significantly. That was confirmed by SEM and TEM analysis. The particle size was less than 20 nm and show strong tendency to agglomeration. The electron diffraction pattern indicates that Bi4Ti3O12 crystalline powder is embedded in an amorphous phase of bismuth titanate. Phase composition and atom ratio in BIT ceramics were determined by X-ray diffraction and EDS analysis.  相似文献   

12.
The phase pure spinel lithium titanate (Li4Ti5O12) in the form of ultrafine fibre was synthesised by the combination of sol–gel and electrospinning techniques. The electrospinning process for the preparation of Li4Ti5O12 precursor was optimised to get bead-free fibrous mat with uniform thickness. Crystalline Li4Ti5O12 in the form of ultrafine fibre was synthesised by the calcination of the precursor at 800 °C in air for 4 h. The material was characterised by X-ray diffraction, Raman spectroscopy and scanning electron microscopy and subsequently evaluated as an electrode active material using Li metal as a counter electrode. The material exhibited a first cycle specific capacity of 154 mAh g?1 with good rate capability and cyclability.  相似文献   

13.
The morphology and electronic structure of a Li4Ti5O12 anode are known to determine its electrical and electrochemical properties in lithium rechargeable batteries. Ag-Li4Ti5O12 nanofibers have been rationally designed and synthesized by an electrospinning technique to meet the requirements of one-dimensional (1D) morphology and superior electrical conductivity. Herein, we have found that the 1D Ag-Li4Ti5O12 nanofibers show enhanced specific capacity, rate capability, and cycling stability compared to bare Li4Ti5O12 nanofibers, due to the Ag nanoparticles (<5 nm), which are mainly distributed at interfaces between Li4Ti5O12 primary particles. This structural morphology gives rise to 20% higher rate capability than bare Li4Ti5O12 nanofibers by facilitating the charge transfer kinetics. Our findings provide an effective way to improve the electrochemical performance of Li4Ti5O12 anodes for lithium rechargeable batteries.   相似文献   

14.
High‐rate performance flexible lithium‐ion batteries are desirable for the realization of wearable electronics. The flexibility of the electrode in the battery is a key requirement for this technology. In the present work, spinel lithium titanate (Li4Ti5O12, LTO) cuboid arrays are grown on flexible carbon fiber cloth (CFC) to fabricate a binder‐free composite electrode (LTO@CFC) for flexible lithium‐ion batteries. Experimental results show that the LTO@CFC electrode exhibits a remarkably high‐rate performance with a capacity of 105.8 mAh g?1 at 50C and an excellent electrochemical stability against cycling (only 2.2% capacity loss after 1000 cycles at 10C). A flexible full cell fabricated with the LTO@CFC as the anode and LiNi0.5Mn1.5O4 coated on Al foil as the cathode displays a reversible capacity of 109.1 mAh g?1 at 10C, an excellent stability against cycling and a great mechanical stability against bending. The observed high‐rate performance of the LTO@CFC electrode is due to its unique corn‐like architecture with LTO cuboid arrays (corn kernels) grown on CFC (corn cob). This work presents a new approach to preparing LTO‐based composite electrodes with an architecture favorable for ion and electron transport for flexible energy storage devices.  相似文献   

15.
We have studied the effect of final annealing temperature on the formation of lithium zinc titanate, its electrical conductivity, and its electrochemical performance. Li2ZnTi3O8 has been shown to form in a wide range of annealing temperatures, from 673 to 1073 K. Its particle size increases systematically with increasing annealing temperature, whereas its conductivity decreases. The highest electrochemical capacity at low currents is offered by the materials annealed at 773 and 873 K, and the highest cycling stability is offered by the material prepared at 873 K.  相似文献   

16.
尖晶石型 Li4Ti5O12电极材料的合成与电化学性能研究   总被引:4,自引:0,他引:4  
分别采用三种方法合成了尖晶石型Li4Ti5O12电极材料.考察了不同的工艺条件对目标材料性能的影响.应用XRD、SEM、LSD、CV、AC impedance以及恒流充放电测试等手段对目标材料进行了结构表征和性能测试.结果表明,利用溶剂分散湿磨可以在较短的时间内得到纯相的Li4Ti5O12.葡萄糖的加入能够提高Li4Ti5O12导电性,使材料具有良好的嵌锂性能.在0.2C倍率下进行充放电测试,其可逆比容量超过160mAh·g-1,44次循环后,容量没有明显衰减.Li4Ti5O12/LiFePO4实验电池测试表明Li4Ti5O12是可选的锂离子负极材料.  相似文献   

17.
The system Li2O-TiO2 contains four stable phases: Li4TiO4, Li2TiO3, Li4Ti5O12 and Li2Ti3O7, and one metastable phase, H. Li2TiO3 undergoes an order-disorder phase transition at 1215°C. High Li2TiO3 forms an extensive range of solid solution between ~44 and 66 mole % TiO2 and low Li2TiO3 forms a more limited range of solid solution between ~47 and 51% TiO2. The temperature of the order-disorder transition decreases to either side of the Li2TiO3 composition. The spinel phase Li4Ti5O12, has an upper limit of stability at 1015 ± 5°C, above which it decomposes to high Li2TiO3 ss and Li2Ti3O7. Li2Ti3O7 has a lower limit of stability at 957 ± 20°C, below which it decomposes to Li4Ti5O12 and rutile. During this decomposition of Li2Ti3O7, phase H, a metastable phase of unknown composition, forms as an intermediate. Li2Ti3O7 forms a short range of solid solutions between ~74 and 76% TiO2. A phase diagram for the system Li2O-TiO2 has been constructed using a combination of results determined here and those reported by GICQUEL, MAYER and BOUAZIZ. X-ray powder diffraction data are given for Li2Ti3O7, Li4Ti5O12 and phase H.  相似文献   

18.
The electrochemical performance of LiMn2O4 is improved by the surface coating of nano-Li3PO4 via ball milling and high-temperature heating. The Li3PO4-coated LiMn2O4 powders are characterized by X-ray diffraction and high-resolution transmission electron microscopy (HRTEM). At 55 °C, capacity retention of 85% after 100 cycles was obtained for Li/Li3PO4-coated LiMn2O4 electrode at 1C rate, while that of pristine sample was only 65.6%. The Li/Li3PO4-coated LiMn2O4 electrode also showed improved rate capability especially at high C rates. At 5C-rates, the delivered capacities of pristine and Li3PO4-coated LiMn2O4 electrodes were 80.7 mAh/g and 112.4 mAh/g, respectively. The electrochemical impedance spectroscopy (EIS) indicates that the charge transfer resistance for Li/Li3PO4-coated LiMn2O4 cell was reduced compared to Li/LiMn2O4 cell.  相似文献   

19.
Samples of compounds in the ternary system BaO-Li2O-TiO2 were synthesized by using the sol-gel method at pH 3 and pH 9, and the calcination temperatures of 600 and 800°C in the region of solid solutions which can form the ideal composition Ba3Li2Ti8O20. The X-ray diffraction patterns of the samples showed a mixture of three crystalline phases, the main one was isostructural with the ternary phase Ba3Li2Ti8O20; the other two were BaTiO3 and Li2TiO3. By refining the structures with the Rietveld technique, a good fit to the experimental diffraction pattern was found, showing the partial substitution of Ti by Li in the Ba2Ti6O13 structure. The catalytic activity in methane combustion under the stoichiometric mixture of dilute CH4/O2 was higher for the samples calcined at 600°C, where the Ba3Li2Ti8O20 ternary compound was formed. This high activity can be related with the large specific surface area, presence of anatase and low crystallite size.  相似文献   

20.
《Materials Research Bulletin》2013,48(11):4641-4646
Crystalline Li4Ti5O12 is synthesized by a method involving the freeze-drying and self-ignition of a gel prepared from titanium isopropoxide, lithium nitrate and hydroxypropylmethylcellulose (HPMC). This synthesis route yields crystalline Li4Ti5O12 particles after calcination at 800 °C for 2 h. In an alternative route, addition of ammonium nitrate shifts the self-ignition mode from wave-like propagation to simultaneous. Powders with different microstructures are thereby obtained. Electrochemical characterization shows that the best results for Li+ intercalation/desintercalation are obtained for the powder prepared without ammonium nitrate addition. These results highlight the necessity for a control of the self-ignition mode to obtain adequate properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号