首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The dynamic behavior and the performance characteristics of the disk-type traveling wave piezoelectric ultrasonic motors (USM) are analyzed using impedance matrices. The stator is divided into three coupled subsystems: an inner metal disk, a piezoelectric annular actuator with segmented electrodes, and an outer metal disk with teeth. The effects of both shear deformation and rotary inertia are taken into account in deriving an impedance matrix for the piezoelectric actuator. The impedance matrices for each subsystem then are combined into a global impedance matrix using continuity conditions at the interfaces. A comparison is made between the impedance matrix model and the three-dimensional finite element model of the piezoelectric stator, obtaining the resonance and antiresonance frequencies and the effective electromechanical coupling factors versus circumferential mode numbers. Using the calculated resonance frequency and the vibration modes for the stator and a brush model with the Coulomb friction for the stator and rotor contact, stall torque, and no-load speed versus excitation frequencies are calculated at different preloads. Performance characteristics such as speed-torque curve and the output efficiency of the USM also are estimated using the current impedance matrix and the contact model. The present impedance model can be shown to be very effective in the design of the USM.  相似文献   

2.
旋转型行波超声电机理论模型的仿真研究   总被引:1,自引:2,他引:1  
建立了旋转型行波超声电机定、转子间的摩擦驱动模型,不仅考虑了接触界面上的纵向分布力,而且分析接触力沿周向和径向上的分量,在此基础上结合定子和转子的动力学模型得到了整个电机的机电耦合模型。文章分析了预压力影响电机驱动频率的本质原因,说明该频率不能直接通过分析自由定子得到,最后通过数值计算分析了接触界面力对电机工作频率的影响,取得了与实验一致的结果。  相似文献   

3.
The characteristics of longitudinal-torsional hybrid transducer-type ultrasonic motors (HTUSM) are low speed and high torque. The discontinuous-surface-contact mode between the stator and the rotor is different from the many-point-contact mode of traveling wave motors, which is also an essential cause for high torque. Therefore, it is important to analyze its force transfer model between the rotor and the stator. In this paper, issues of using the method of equivalent circuit model are addressed. The relationships between the contact angle, preload, and physical parameters of frictional materials are given, according to the impulse conservation law axially. The equations describing output torque, amplitudes of longitudinal and torsional vibration, and parameters of the rotor are derived according to the principle that the work done by the load is equal to that by the driving force in one vibrating cycle. All factors that influence the mechanical characteristics are analyzed, and accuracy and suitability of the force transfer model are verified by comparison with the prototype motor. The formula for transfer efficiency on the stator/rotor interface is given, and the low-efficiency of this type motor is explained. The wide-working frequency range property of this type motor is shown with experimental results. Based on this study, the parameters of the rotor and preload are determined. The maximum torque of the prototype motor is up to 13.2 nm, and no-load speed of this type of motor is 12.5 rpm.  相似文献   

4.
This paper proposes a compact ultrasonic motor with low manufacturing costs, a simpler driving circuit, and scalability. The stator of the motor presented in this paper consists of a hollow metal cylinder, whose outside surface was flattened on two sides at 90 degrees to each other, on which two rectangular piezoelectric plates were bonded. Because the cylinder has a partially square/partially circular outside surface, the stator has two degenerated bending modes that are orthogonal to each other. A wobbling motion is generated on the cylinder when only one piezoelectric plate is excited at a frequency between the two orthogonal bending modes. A rod through a pair of ferrules was used as the rotor of this motor. The prototype motor, whose stator was 2.4 mm in diameter and 10 mm in length, operated at 69.5 kHz, was experimentally characterized, and a maximum torque of 1.8 mNm was obtained.  相似文献   

5.
针对传统箝位式压电电机在谐振态下工作时,方波振动的箝位部分结构设计复杂问题,提出一种新型箝位式压电电机。该电机箝位部分与驱动部分均由同频正弦电压驱动实现正弦振动,通过定子对动子的箝位接触,实现动子单向输出运动。相较于传统箝位式压电电机和超声电机,该电机的定子结构设计无需采用模态简并,结构设计难度降低。利用有限元仿真确定定、动子结构参数,制造样机并搭建实验平台。对箝位部分分别采用正弦波与方波做激励,再对驱动部分进行波形对比,表明正弦波亦能达到预期效果。实验结果表明:准静态时,激励电压频率为250Hz、电压峰峰值Vp-p为10V时,步进距离为0.5μm,步进速度0.13mm/s;谐振态时,激励电压频率为540Hz、电压峰峰值Vp-p为70V时,步进距离为32μm,步进速度16.9mm/s;该电机可兼顾低频高分辨率和高频高速输出以实现跨尺度工作。  相似文献   

6.
A rotary piezoelectric motor design with simple structural components and the potential for miniaturization using a pretwisted beam stator is demonstrated in this paper. The beam acts as a vibration converter to transform axial vibration input from a piezoelectric element into combined axial-torsional vibration. The axial vibration of the stator modulates the torsional friction forces transmitted to the rotor. Prototype stators measuring 6.5 x 6.5 x 67.5 mm were constructed using aluminum (2024-T6) twisted beams with rectangular cross-section and multilayer piezoelectric actuators. The stall torque and noload speed attained for a rectangular beam with an aspect ratio of 1.44 and pretwist helix angle of 17.7 degrees C were 0.17 mNm and 840 rpm with inputs of 184.4 kHz and 149 mW, respectively. Operation in both clockwise and counterclockwise directions was obtained by choosing either 70.37 or 184.4 kHz for the operating frequency. The effects of rotor preload and power input on motor performance were investigated experimentally. The results suggest that motor efficiency is higher at low power input, and that efficiency increases with preload to a maximum beyond which it begins to drop.  相似文献   

7.
Modeling of a piezoelectric rotary ultrasonic motor   总被引:28,自引:0,他引:28  
A piezoelectric rotary ultrasonic motor is modeled for the purpose of predicting, a priori, motor performance as a function of design parameters. The Rayleigh-Ritz assumed mode energy method is used to model the distributed piezoceramics and the traveling wave dynamics of the stator. Natural frequencies and modeshapes are obtained for a generally configured motor. Nonlinear normal and tangential interface forces between the rotor and stator are incorporated into the forcing function along with the linear piezoelectric forcing. Given the applied torque, applied axial loading, and piezo drive voltages as inputs to the model, general motor performance measures are obtained-namely speed, input power, output power, and efficiency. The approach presented here provides a general framework for modeling these motors as well as a design tool for optimizing prototypes with the added flexibility of allowing for a wide variety of geometries and materials  相似文献   

8.
二自由度行波型超声波电机是一种新型多自由度超声波电机。本文从二自由度行波型超声波电机的驱动机理和基本结构出发,就电机的结构实现、驱动球转子的最佳定子结构进行了分析,利用所建立的有限元模型进行定子振动的模态分析和共振频率计算,提出了外缘大倾角内缘线接触的行波定子。然后建立定子的接触模型,对其机械性能进行分析。测试结果表明,修正的数学模型更加符合电机的实际运行特性。所研制样机的球转子直径为45mm,定子直径为30mm,实现的堵转力矩为120mNm,空转转速12r/min。本文工作为多自由度行波型超声波电机的优化设计、性能提高奠定了基础。  相似文献   

9.
In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.  相似文献   

10.
This article continues the discussion of a traveling-wave piezoelectric linear motor. Part I of this article dealt with the design and analysis of the stator of a traveling-wave piezoelectric linear motor. In this part, the discussion focuses on the structure and modeling of the contact layer and the carriage. In addition, the performance analysis and evaluation of the linear motor also are dealt with in this study. The traveling wave is created by stator, which is constructed by a series of bimorph actuators arranged in a line and connected to form a meander-line structure. Analytical and experimental results of the performance are presented and shown to be almost in agreement. Power losses due to friction and transmission are studied and found to be significant. Compared with other types of linear motors, the motor in this study is capable of supporting heavier loads and provides a larger thrust force.  相似文献   

11.
A new type of piezoelectric linear motor incorporating a traveling wave has been developed. The linear motor is comprised of a stator and a carriage. The stator design, which consists of a meander-line structure and gear teeth mounted on the meander-line structure, is the focus of this article. The meander-line structure is constructed with bimorph actuators arranged in a line. These actuators are driven by two phased sets of alternating current (ac) in order to generate a traveling wave. The traveling wave is transferred to the gear teeth, by which the carriage is driven. Modeling of the stator is derived by use of a strain energy method. The performance of various materials is evaluated by analytical and experimental methods. The analytical and the experimental results are quite approximate. Modal analysis is investigated using ANSYS. Appropriate modes associated with ultrasonic levels of resonant frequency are selected to obtain desired motion and to enhance the output performance. Surface speed for various applied input voltage are studied and indicate a nearly linear relationship. The stator in combination with the carriage makes up the linear motor  相似文献   

12.
This paper describes a tangential-axial eigen-mode of a piezoelectric hollow cylinder. A new type of piezoelectric ultrasonic motor using this oscillation mode has been developed. The motor is a traveling-wave-type motor. The stator of such a motor consists of a solid piezoelectric hollow cylinder, which, excited in the tangential-axial resonant mode by a three-phase electrical signal, will exhibit elliptical displacement and transfer rotation to the rotor. The behavior of the stator has been simulated with finite element method (FEM) software. The simulation results have been checked with single-point contact measurements on the surface of the ultrasonic motors. The paper closes with the introduction of new ultrasonic motors based on this oscillation mode.  相似文献   

13.
This paper presents the design, fabrication, and characterization of a new type of standing wave piezoelectric ultrasonic motor. The motor uses a metallic flextensional amplifier, or cymbal, to convert the contour mode vibrations of a square piezoelectric ceramic plate into flexural oscillations, which are further converted to produce rotary actuation by means of an elastic-fin friction drive. The motor operates on a single-phase electrical supply. A beryllium copper rotor design with three-fin configuration was adopted, and the geometry was varied to include different material thicknesses, fin lengths, and inclinations. The best stall torque and no load speed for a 25-mm square motor were 0.72 Nmm and 895 r/minute, respectively. The behavior of the stator structure was analyzed by ANSYS finite element software using harmonic and modal analyses. The vibration mode estimated by finite element modeling (FEM) was confirmed by laser Doppler vibration measurements.  相似文献   

14.
The paper describes a piezoelectric motor that combines the merits of piezoelectric materials, such as high power density generated at electromechanical resonance, and a precise control of displacement. In the motor, a standing shear wave is excited at the resonance in the piezoelectric tube, and it produces high-frequency torsional vibrations of the stator. The vibrations are converted into unidirectional rotation of a rotor by using a direct coupling mechanism between the stator and the rotor in which a clutch drives the rotor via locking it. The direct coupling makes it possible to transmit the whole power generated in the piezoelectric tube to the rotor, and thus achieve the high efficiency of the motor. It also allows combining two regimes of operation: continuous rotation and a stepwise motion within a 360 degrees interval with a high resolution of angular displacement.  相似文献   

15.
A new type of piezoelectric linear motor incorporating a traveling wave has been developed. The linear motor is comprised of a stator and a carriage. The stator design, which consists of a meander-line structure and gear teeth mounted on the meander-line structure, is the focus of this article. The meander-line structure is constructed with bimorph actuators arranged in a line. These actuators are driven by two phased sets of alternating current (ac) in order to generate a traveling wave. The traveling wave is transferred to the gear teeth, by which the carriage is driven. Modeling of the stator is derived by use of a strain energy method. The performance of various materials is evaluated by analytical and experimental methods. The analytical and the experimental results are quite approximate. Modal analysis is investigated using ANSYS. Appropriate modes associated with ultrasonic levels of resonant frequency are selected to obtain desired motion and to enhance the output performance. Surface speed for various applied input voltage are studied and indicate a nearly linear relationship. The stator in combination with the carriage makes up the linear motor.  相似文献   

16.
This paper proposes an analytical model of a rotary motor driven by an anisotropic piezoelectric composite laminate. The driving element of the motor is a three-layer laminated plate. A piezoelectric layer is sandwiched between two anti-symmetric composite laminae. Because of the material anisotropy and the anti-symmetric configuration, torsional vibration can be induced through the inplane strain actuated by the piezoelectric layer. The advantages of the motor are its magnetic field immunity, simple structure, easy maintenance, low cost, and good low-speed performance. In this paper, the motor is considered to be a coupled dynamic system. The analytical model includes the longitudinal and torsional vibrations of the laminate and the rotating motion of the rotor under action of contact forces. The analytical model can predict the overall characteristics of the motor, including the modal frequency and the response of motion of the laminate, the rotating speed of the rotor, the input power, the output power, and the efficiency of the motor. The effects of the initial compressive force, the applied voltage, the moment of rotor inertia, and the frictional coefficient of the contact interface on the characteristics of the motor are simulated and discussed. A selection of the numerical results from the analytical model is confirmed by experimental data.  相似文献   

17.
本文提出了一种根据人类行走姿态加以抽象的新型双足压电直线电机。音叉共鸣结构的引入使得驱动足可以产生大振幅,而且提高了压电换能效率,低电压即可驱动。驱动足实现大振幅的意义在于大大降低了对于导轨的要求,木轨、塑料轨等首次成为压电超声波电机的驱动导轨。本文建立了该电机简化的动力学模型,分析了定子拓扑结构、配重等设计参数对于输出机械性能的影响,给出了设计准则。通过实验测出了该电机的输出特性,最高输出速度为210mm/s,最大输出力为0. 5N。  相似文献   

18.
杆式行波超声电机运动机理的研究   总被引:4,自引:1,他引:4  
本介绍了作发展的一种杆式行波超声电机的结构。基于振动和波动理论,深人研究了杆式行波超声电机的运行机理,推导了定子端面上任意质点运动轨迹,证明了在一定的激励条件下,定子端面沿Z向、径向和周向都可形成行波。描述了定子端面某些点的运动轨迹的空间分布。还提出了定、转子问最佳接触角和有效椭圆的概念。这些都为设计高效率的杆式超声电机提供了理论依据。  相似文献   

19.
The stator design of a new type of spherical motor driven by piezoelectric actuators is developed. A curved piezoelectric actuator is designed to attach to the spherical surface. A series of the curved piezoelectric actuators is laid in a line around a spherical surface. By applying an appropriate voltage signal with phase difference on neighboring actuators, a traveling wave is generated on the hemispherical shell. Each set of curved piezoelectric actuators is designed to provide motion with a single degree-of-freedom (DOF). With two or three sets of the piezoelectric actuators constructed to be mutually perpendicular, the motor can provide 2-DOF or 3-DOF motion. Stator design and analysis and experiment for the 1-, 2-, and 3-DOF conditions are presented in this article. Analytical calculation and experiment results of several fundamental characteristics of the stator are in good agreement. Performance evaluation of rotation speed and torque of the stator and some implementation problems are also addressed.  相似文献   

20.
Finite element simulation for a new disc-type ultrasonic stator   总被引:1,自引:0,他引:1  
This paper is concerned with the development of a new disc-type piezoelectric ultrasonic stator. Linear piezoelectric, mechanical, and piezoelectro-mechanic behaviors of a metal disc structure embedded with piezoelectric actuator are considered. Using a finite element method, a dynamic formulary is modeled for the new disc-type piezoelectric ultrasonic stator. In this model, a 3-dimensional (D) mechanical element with an extra electrical degree of freedom is used to simulate dynamic vibration modes and analyze characteristic responses such as electrical impedance response, phase response, and mechanical frequency response for a new disc-type piezoelectric ultrasonic stator. An adaptive boundary condition, simple support condition with three nonequal-triangular fixed points near the edge for the mechanism design of a new disc-type piezoelectric ultrasonic stator is defined so that a lateral elliptical motion of the contact point between stator and rotor can be realized for driving the rotor. The finite element results have been compared with the experimental measurements. As a result, the analysis model seems to be similar to the real condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号