首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
建立了双转子连续混炼机新型三棱转子的模型,运用聚合物加工专用分析软件Polyflow,分别对具有不同楔形角的新型三棱转子的动态流场进行了三维非牛顿等温模拟,用统计学方法得到了各转子流场的停留时间分布、最大剪切应力分布以及分离尺度曲线。结果表明,楔形角较小的转子的分散混合性能较好,但分布混合性能较差,楔形角较大的转子的分布混合性能较好,但分散混合性能较差;当楔形角在15 °附近时,新型三棱转子的分散、分布混合性能最好。  相似文献   

2.
Due to scale effects, directly enlarging the size of the micromixer is an easy way to reduce the efficiency of mass and heat transfer in the continuous flow chemical process. It is urgently needed to solve the problem of mass and heat transfer efficiency of the scale-up mixer. A scale-up microfluidic mixer with a porous structure was designed to improve the mass and heat transfer efficiency using computational fluid dynamics (CFD) simulations. The effects of rotation angle, porosity, and baffle spacing were studied to optimize the mixer structure. Compared with the 1 mm mixer without structure, the scale-up mixer has a higher mixing efficiency and an 80% reduction in energy consumption at Re ≥ 700. A Nusselt number was used to evaluate the heat transfer efficiency of the mixer during fluid heating. The results show that the porous baffle promotes the generation of secondary flow and enhances the heat transfer effect, making its Nu increase by three times compared with the unstructured mixer. The scale-up microfluidic mixer with a porous structure can effectively improve the mass and heat transfer performance. This study can provide a reference for the design or development of a novel scale-up mixer.  相似文献   

3.
在提出一种新型混沌型转子结构的基础上,运用Polyflow软件对其混炼过程进行三维非牛顿等温模拟,并借助于粒子示踪法对物料所经历的流场特性进行统计学分析;分析了转子结构和工艺参数对转子混合性能的影响,同时通过共混改性实验,对转子的混合效果进行了评估和表征。结果表明,高混沌型转子的分布混合能力有较大的提高,同时保持着良好的分散混合能力;混沌型转子制备的复合材料力学性能优于经典转子;转子转速的提高可以增强混沌转子的分散及分布混合能力,适当的加料速率是保证取得较好混合效果的关键因素。  相似文献   

4.
为了对旋转流化床粉体混合机进行优化设计,采用CFD-DEM联合仿真的方法,对旋转流化床粉体混合机内球形颗粒的混合过程进行数值模拟,通过Lacey指数具体评价颗粒的混合效果,研究了进气管倾斜角度、进气管布置方式、进气方式对球形颗粒混合效果的影响,并进行球形颗粒混合实验验证。结果表明,进气管最合适的倾斜角度应保证气流作用区域面积恰好为底部颗粒物料区域面积的一半。进气管水平布置时能够保证很好的混合质量及较快的混合速率。脉冲及连续方式进气均能实现均匀混合,脉冲进气方式比连续进气方式耗气量更低。颗粒混合实验有很好的混合效果,与数值模拟的结果具有较高的一致性,从而获得了一种混合效果优越的结构形式,进气管倾斜角度α=35°,水平布置。  相似文献   

5.
Mixing in static mixers is studied using a set of competitive-parallel chemical reactions and computational fluid dynamics (CFD) in a wide range of operating conditions. Two kinds of mixers, a wide angle Y-mixer and a two jet vortex mixer, referred to as Roughton mixer, are compared in terms of reaction yields and mixing times. It is found that the Roughton mixer achieves a better mixing performance compared to the Y-mixer. The effect of flow rate ratio on mixing in the Roughton mixer has been studied as well and it is shown that the mixing efficiency is not affected by the flow rate ratio. Moreover, experimental results and model predictions are in good agreement for all mixer geometries and operating conditions. CFD is used to calculate absolute mixing times based on the residence time in the segregated zone and it is shown that mixing times of less than 1 ms can be achieved in the Roughton mixer. In addition, CFD provides insight in local concentrations and reaction rates and serves as a valuable tool to improve or to scale-up mixers.  相似文献   

6.
A contraction-expansion helical mixer which combines several features, viz. helical pipes for induction of secondary flows and sudden expansion and contraction array tor expansion vortices, has been designed to en- hance flow mixing. A fast competitive-consecutive diazo coupling reaction is used to test the mixing efficiency of contraction-expansion helical mixer. Furthermore, an image processing technique is applied for data visualization and monitoring the extent of mixing. The mixing performance is found to be superior in comparison to the regular helical mixer in the range of Reynolds number from 170 to 1540. Moreover, the mixing time of contraction-expansion helical mixer was found to be reduced by more than 25% compared to the regular helical pipe. Finally, a simple correlation is proposed for predicting the mixing time.  相似文献   

7.
梁栋  张淑芬 《化工学报》2015,66(8):3036-3040
为了增强普通螺旋管的混合效率,在普通的螺旋管结构中引入突放突缩结构,设计制造出缩放螺旋混合 器。以竞争串连反应的离集指数为指标,对缩放螺旋混合器的结构进行了优化设计,考察了缩放螺旋混合器的几何参数--混合单元数、粗细段长度比、螺距、曲率半径以及Reynolds数对混合器的混合效率的影响。结果表 明:缩放螺旋混合器的粗细段长度比为1/4,曲率半径为10.5 mm,混合单元数为40,Reynolds数在1000~1575时混合效率最佳;参数优化后的缩放螺旋混合器比普通螺旋管混合器以及具有缩放结构的直管混合器中的混合效率更高。  相似文献   

8.
建立了圆形转子混合设备的二维流动有限元模型,采用网格重叠技术,利用粒子跟踪法对瞬态混炼流场进行了数值模拟,对不同相位差下的的分散混合性能、分布混合性能、线拉伸以及混合效率进行了统计和比较;分析了相位角对流体混沌混合对效率的影响,为密炼机驱动系统的新的优化方向提供了一定的理论参考。  相似文献   

9.
Performance optimization of a mixer is an issue of great significance in many industrial technologies dealing with particulate materials. By means of Discrete Element Method (DEM), this work examines how the mixing performance of a cylindrical mixer is affected by the two design parameters: blade rake angle and blade gap at the vessel bottom, extending our previous work on particulate mixing. The flow and mixing performance are quantified using the following: velocity fields in vertical cylindrical sections, Lacey’s mixing index, inter-particle forces in vertical cylindrical sections through the particle bed and the applied torque on the blade. Simulation results show that the mixing rate is the fastest for a blade of 90° rake angle, but inter-particle forces are large. Conversely, the inter-particle forces are small for a blade of 135° rake angle, but the mixing rate is slow. The simulation results also indicate that the force applied on particles, velocity field and mixing are interrelated in that order.  相似文献   

10.
Pressure drop and homogenization efficiency of a motionless mixer of helical type have been studied experimentally. For evaluation of the drag coefficient the equation has been proposed which is valid within the range of Reynolds number from 10?2 to 104 The efficiency of the motionless mixer for mixing of two Newtonian liquids has been investigated by using a decolourization method. For the operating conditions studied in this work it appears that there is the worse performance of the mixer about the Reynolds number of 50. No influence of volume flow rate ratios (from 1 to 10) upon the performance of the mixer has been observed. A higher number of mixing elements must be applied for homogemzation of liquids with viscosity ratios above 100 as compared with that for viscosity ratio 1.  相似文献   

11.
Continuous powder mixing is an efficient alternative in high volume manufacturing of powder-based products. A new method is communicated in this paper to determine the effects of different operating conditions and mixer configurations on mixing performance. The main idea of the proposed methodology is the utilization of experimental residence time distribution (RTD) measurements to (a) determine the contributions of feeding variability, powder segregation and RTD variability on output composition variance and (b) develop a predictive model of the output variance of a continuous mixer. The method is illustrated using experimental data for mixing acetaminophen and lactose in convective continuous mixer.  相似文献   

12.
利用Polyflow软件,对聚合物熔体在双转子连续混炼机内的混合过程进行了统计学分析。通过计算转子转过不同角度时的三维等温拟稳态流场,采用粒子示踪分析(PTA)方法,对聚合物熔体在双转子连续混炼机内的动态混合过程进行了可视化模拟;在此基础上对1000条粒子的运动轨迹进行统计学分析,得出了停留时间分布、累积最大剪切速率分布、百分比粒子所受的剪切速率随时间的变化等参数,并分析了其对双转子连续混炼机混合性能的影响。  相似文献   

13.
This study aims to develop a general model of the convective continuous mixing process. The main idea is that continuous mixing can be considered as a combination of powder flow and mixing processes. Although powder flow is characterized by the residence time distribution (RTD), powder mixing can be described by a batch mixing process simulated in one periodic section of the continuous mixer. By characterizing the two processes separately, we can calculate the number of sections required to achieve certain homogeneity. In this study, continuous mixing is simulated using the discrete element method, and segregating and non‐segregating mixing cases are tested to investigate the applicability of the model. Results show satisfactory predictions by the model, which is able to characterize the continuous mixing performance of both mixing cases. On the basis of this study, we were also able to suggest a novel method in design and control of continuous powder mixing systems. © 2011 American Institute of Chemical Engineers AIChE J , 2012  相似文献   

14.
利用有限元分析软件Polyflow对自行设计的ECM30型双转子连续混炼机转子的混炼过程作了三维等温流场分析,借助于剪应力和混合指数对转子的分散混合效率进行了分析研究;讨论了不同的操作工艺对分散混合效率的影响。该数值模拟的结果将有助于针对不同的聚合物采用不同的混炼工艺,使得聚合物在转子中的混合达到最优化。  相似文献   

15.
Various designs of the so called Low-Pressure Drop (LPD) static mixer are analyzed for their mixing performance using the mapping method. The two types of LPD designs, the RR and RL type, show essentially different mixing patterns. The RL design provides globally chaotic mixing, whereas the RR design always yields unmixed regions separated by KAM boundaries from mixed regions. The crossing angle between the elliptical plates of the LPD is the key design parameter to decide the performance of various designs. Four different crossing angles from 90° to 160° are used for both the RR and RL designs. Mixing performance is computed as a function of the energy to mix, reflected in overall pressure drop for all designs. Optimization using the flux-weighted intensity of segregation versus pressure drop proves the existence of the best mixer with an optimized crossing angle. The optimized angle proves to be indeed the LLPD design used in practice: the RL-120 with θ = 120°, although RL-140 θ = 140° performs as good. Shear thinning shows minor effects on the mixing profiles, and the main optimization conclusions remain unaltered. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

16.
In this paper we examine the effect of rotation rate, mixing angle, and cohesion on the powder residence time and the content uniformity of the blend exiting from two continuous powder mixers. In addition, differences in mixing performance between the two blenders are examined. Analysis of variance is used to determine significance of main effects and their interactions. The results show that the effect of powder cohesion is scale-dependent, having a significant effect in the larger mixer. The overall rotation rate was the least influential parameter in terms of content uniformity. The residence time is significantly affected by both rotation rate and mixing angle.  相似文献   

17.
An experimental investigation was carried out to study the mixing performance and flow behavior in a continuous powder mixer for a typical pharmaceutical mixture. Blender performance, characterized by the relative standard deviation (RSD) of composition of blend samples taken at the blender discharge and by the variance reduction ratio (VRR) of the blender, was measured as a function of impeller rotation rate, flow rate and blade configuration. The flow behavior in the continuous mixer was characterized using the residence time distribution (RTD) and powder hold-up measurements. To quantify the strain applied to the powder in the blender, the number of blade passes experienced by the powder in the blender was calculated using the residence time measurements. The relationship between different experimental parameters and mean residence time and mean centered variance was examined. The mixing performance was largely dominated by the material properties of the mixture, which had a larger effect than the ingredient flow rate variability contributed by the feeders. Holdup was strongly dependent on impeller rotation rate; as impeller rotation rate increased, holdup (and therefore, residence time) decreased sharply. As a result, intermediate rotation rates showed the best mixing performance. Blade configuration affected performance as well; blade patterns where some of the blades push the powder backwards improved the mixing performance.  相似文献   

18.
Continuous flow microreactors can greatly improve the safety and product yields of processes in the pharmaceutical and fine chemical industry by overcoming many of the drawbacks of traditional batch and semi-batch stirred reactors. This study compares on a common scale the pressure drop and mixing performance of different size commercial microreactor plates composed of a tangential, SZ-shaped or caterpillar mixer followed by a rectangular serpentine main channel. The pressure drop was fitted to a friction factor model, which suggests that the mixing zone had significant chaotic secondary flow patterns, whereas the main channel did not. Moreover, the mixing zone was the main contributor to the overall pressure drop. Mixing performance was then characterized using competitive parallel reactions. Upon the formation of chaotic secondary flows, typically due to the interactions of artificially induced vortices, the mixer performance was found to be independent of geometry for a given energy dissipation rate. However, the mixer geometry will affect the critical Reynolds number that induces chaotic advection and changes the mixing time scale.  相似文献   

19.
采用示踪法研究了涡轮喷射混合器内错流射流混合特征。探讨了射流的流动状态如射流的附壁效应、穿透率、动量比及雷诺数等对混合的影响,并对混合时间进行了分析。研究结果表明,涡轮喷射混合器是能够满足混合均匀度要求高、介质体积比高和喷嘴能有效防堵的快速混合装置。  相似文献   

20.
Static mixers, often referred to as motionless mixers, are in-line mixing devices that consist of mixing elements inserted into a length of pipe. Most of the experimental works in this field have concentrated on establishing design guidelines and pressure drop correlations. Due to experimental difficulties, few articles have been published on the investigation of the flow and mixing mechanisms. In this work, a Kenics KMX static mixer was utilized to study concentration and residence time distribution (RTD) and effect of Reynolds number on mixing. The static mixer had six mixing elements arranged in-line along the length of the tube, and the angle between two neighboring elements was 90°. The length of the mixer was 0.98 m with internal and external diameters of 5.0 cm and 6.0 cm, respectively. The main continuous fluid was water, and NaCl solution was used as a tracer. All experiments were conducted with three replications at three Reynolds numbers, Re = 1188.71, 1584.95, and 1981.19. A dispersion model was used to model the RTD data. The experimental results were compared with the model results and reasonable agreement was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号