首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Surface-to-bed heat transfer and pressure measurements were carried out in a 0.17 m ID pulsed bubbling fluidized bed with glass bead and silica sand particles having mean diameters ranging from 37 μm to 700 μm to investigate the effects of flow pulsation on heat transfer and bed hydrodynamics. A solenoid valve was used to supply pulsed air to the bed at 1 to 10 Hz. The bed surface was found to oscillate with the frequency of pulsation, the oscillation's amplitude decreasing with frequency. The standard deviation of the bed pressure drop in the pulsed bed was found to be larger than that in the conventional bed due to the acceleration force imposed by pulsation. For both Geldart B and A particles, high frequency pulsation (7, 10 Hz) enhances the heat transfer compared to continuous flow, the enhancement diminishing with superficial gas velocity and particle size. For Geldart B particles, the effect of pulsation on heat transfer ceases around Uo/Umf = 3.5, whereas 24% improvement in heat transfer coefficient was obtained for 60 μm glass bead particles (Group A) at superficial gas velocities as high as Uo/Umf = 27. Furthermore, in the fixed bed (Uo/Umf < 1) for Geldart B particles, 1 Hz pulsation was found to be very effective resulting in two- to three-fold increase in heat transfer coefficient compared to continuous flow at the same superficial gas velocity. The flow pulsation loses its effect on heat transfer with increasing static bed height, i.e., when Hbed/D > 0.85.  相似文献   

2.
Gas-solid fluidized bed separation expands the choices of highly efficient dry coal beneficiation methods. The hydrodynamics of 0.3-0.15 mm large Geldart B magnetite powder were studied using a combination of experimental and numerical methods to optimize the design of the solid medium used in the fluidized bed. The results show that the Syamlal-O'Brien drag model is suitable for simulating the bed and it is verified that simulated and experimental results are consistent with each other. If the static bed height is no more than 300 mm then the bed height has minimal effect on the fluidization characteristics. As the superficial gas velocity increases the bed activity is improved. However, at the same time the uniformity and stability of the bed drop. Therefore, the gas velocity should be adjusted to no more than 2.0Umf. The density of the Geldart B bed is uniform and stable, which indicates a relatively high fluidization quality. Furthermore, compounded medium solids consisting of < 0.3 mm magnetite powder with a 0.3-0.15 mm particle content of 65.25% and < 1 mm fine coal were used in a pilot gas-solid fluidized bed of 5-10 ton/h capacity. The pilot bed was used to separate 50-6 mm coal. This test resulted in the coal ash content being reduced from 23.74% to 11.79% with a probable error, E, of 0.07 g/cm3 and a recovery efficiency of 98.26%. This indicates that the bed has good separating performance. Nevertheless, to increase the applicability of the separating bed a further study emphasizing a decrease in the lower size limit of the magnetite powder should be performed.  相似文献   

3.
We report granular temperature and solid fraction fields for a thin rectangular bed (20×200 mm cross-section and 500 mm high) of glass particles (mean diameter of 165 μm and density of 2500 kg/m3) fluidized by water for superficial velocities ranging from 0.05Ut, which is approximately double the minimum fluidization velocity, to 0.49Ut, where Ut is the particle terminal velocity estimated by fitting the Richardson-Zaki correlation to the bed expansion data. At superficial velocities below 0.336Ut, the solid fraction and granular temperature are uniform throughout the bed. At higher superficial velocities, the solid fraction tends to decrease with height above the distributor, whilst the granular temperature first increases to a maximum before decaying towards the top of the bed. Correlation of the mean granular temperature with the mean solid fraction and the local granular temperature with the local solid fraction both suggest that the granular temperature in the liquid fluidized bed can be described solely in terms of the solid fraction. The granular temperature increases monotonically with solid fraction to a maximum at φ≈0.18 where it then decreases monotonically as φ approaches the close-packed limit.  相似文献   

4.
The riser is the key-part of a circulating fluidized bed (CFB) and its hydrodynamics are determined mainly by the combined operating superficial gas velocity, U, and solids circulation flux, G. The bottom part of the riser contributes to the total pressure drop of the riser and affects the solids residence time in the riser, due to the possible existence of a dense bed and to the presence of an acceleration zone. Positron Emission Particle Tracking (PEPT) is applied to study these phenomena by measuring the real-time particle motion in a riser of 0.09 m diameter, defining (i) the extent of the acceleration zone, including acceleration length and acceleration time; (ii) the occurrence of a bubbling/turbulent bed under specific conditions of U and G; (iii) the establishment of a fully developed flow immediately after the acceleration zone; (iv) the occurrence of core-annulus flow under specific combinations of U and G; and (v) the disappearance of the intermediate core-annulus region at high values of U and G, where riser hydrodynamics will be either dilute or dense solid up-flow.The particle upflow velocity, Upf, after acceleration was measured and compared with the situation of dilute transport. When the solids circulation flux increases, the dilute transport mode no longer prevails, and Upf should be calculated using an appropriate slip factor, itself a combined factor of U and G. The acceleration length and time are nearly constant, at an approximate average of 0.26 m and 0.21 s respectively, independent of U and G. The acceleration length can be modelled fairly accurately, using a CD-factor of approximately 3.2, which is about half the value predicted by empirical equations established for dilute transport.Dense Suspension Upflow (DSU) is achieved when G exceeds ~ 130 kg m ² s− 1.  相似文献   

5.
We report on 3D computer simulations based on the soft-sphere discrete particle model (DPM) of Geldart A particles in a 3D gas-fluidized bed. The effects of particle and gas properties on the fluidization behavior of Geldart A particles are studied, with focus on the predictions of Umf and Umb, which are compared with the classical empirical correlations due to Abrahamsen and Geldart [1980. Powder Technology 26, 35-46]. It is found that the predicted minimum fluidization velocities are consistent with the correlation given by Abrahamsen and Geldart for all cases that we studied. The overshoot of the pressure drop near the minimum fluidization point is shown to be influenced by both particle-wall friction and the interparticle van der Waals forces. A qualitative agreement between the correlation and the simulation data for Umb has been found for different particle-wall friction coefficients, interparticle van der Waals forces, particle densities, particle sizes, and gas densities. For fine particles with a diameter , a deviation has been found between the Umb from simulation and the correlation. This may be due to the fact that the interparticle van der Waals forces are not incorporated in the simulations, where it is expected that they play an important role in this size range. The simulation results obtained for different gas viscosities, however, display a different trend when compared with the correlation. We found that with an increasing gas shear viscosity the Umb experiences a minimum point near , while in the correlation the minimum bubbling velocity decreases monotonously for increasing μg.  相似文献   

6.
Limestone particle attrition was investigated in a small circulating fluidized bed reactor at temperatures from 25 to 850 °C, 1 atm pressure and superficial gas velocities from 4.8 to 6.2 m/s. The effects of operating time, superficial gas velocity and temperature were studied with fresh limestone. No calcination or sulfation occurred at temperatures ?580 °C, whereas calcination and sulfation affected attrition at 850 °C. Increasing the temperature (while maintaining the same superficial gas velocity) reduced attrition if there was negligible calcination. Attrition was high initially, but after ∼24 h, the rate of mass change became constant. The ratio of initial mean particle diameter to that at later times increased linearly with time and with (Ug − Umf)2, while decreasing exponentially with temperature, with an activation energy for fresh limestone of −4.3 kJ/mol. The attrition followed Rittinger’s surface theory [Beke B. Comminution. Budapest: Akademiai Kiado, 1964; Ray YC, Jiang TS, Wen CY. Particle attrition phenomena in a fluidized bed. Powder Technol 1987a; 49:193-206]. The change of surface area of limestone particles was proportional to the total excess kinetic energy consumed and to the total attrition time, whereas the change of surface area decreased exponentially with increasing temperature. At 850 °C, the attrition rate of calcined lime was highest, whereas the attrition rate was lowest for sulfated particles. When online impact attrition was introduced, the attrition rate was about an order of magnitude higher than without impacts.  相似文献   

7.
The rise velocity, V, of a single sphere, released in the bottom of a bed of sand fluidized by air, was measured: the sphere had a diameter of 9.0 or 13.2 mm; its density ranged from 900 to . These experiments with a single sphere used: (i) a bubbling bed, diameter 141 mm, with 1.05<U/Umf<2.00, (ii) a slugging bed, diameter 24 mm, with 1.70<U/Umf<3.20. Here U is the fluidizing velocity; U=Umf at incipient fluidization. It was found that, for each sphere in a given bed, V=Vmf+C(U-Umf): the constant C was up to 10 times larger for bubbling beds than slugging beds.The rise velocity at incipient fluidization, Vmf, is governed, for both types of bed, by the apparent viscosity of the incipiently fluidized bed. Therefore, Stokes's law was used to predict Vmf, but using an important modification: since each buoyant sphere appears to carry on its top a defluidized ‘hood’ of particles, Stokes's law was applied to the composite ‘particle’ consisting of the sphere plus its hood. Analysis of the measured Vmf then gave the volume of the hood, in agreement with direct measurements of it above a fixed cylinder in a two-dimensional bed. In addition, the analysis gave the apparent viscosity of the incipiently fluidized bed to be 0.66 Pa s, in excellent agreement with the estimate of Grace (Can. J. Chem. Eng. 48 (1970) 30) for similar sand.  相似文献   

8.
Radial gas mixing in a fluidized bed was studied using response surface methodology (RSM), which enables effect examinations of parameters with a moderate number of experiments. All experiments were conducted in a 0.29-m ID fluidized-bed cold model. The gas dispersion process within the bed is described using the dispersed plug flow model. Pure carbon dioxide was used as the tracer gas, continuously injected into the center of the bed by a point source. The downstream radial tracer concentration profile was measured using a gas chromatograph.The radial gas dispersion coefficient, Dr, was well correlated with operating parameters and the particle and gas properties: (UUmf)/Umf, Hs/db, φd, and Ar, with a determination coefficient R2 of 0.966. Effect test indicates that the dimensionless characteristic velocity, (UUmf)/Umf, has the most significant influence on Dr, while the static bed height to bed diameter ratio, Hs/db, is less remarkable. The interactions of (UUmf)/Umf with the distributor open-area ratio, φd, and with the Archimedes number, Ar, both play important roles. An evolutive response surface model was proposed to describe the radial gas mixing in the bubbling/slugging fluidization regimes.  相似文献   

9.
Single particle settling velocities through water fluidized beds of mono-sized glass spheres (dp = 0.645, 1.20, 1.94, 2.98 and 5 mm in diameter) were studied experimentally using a column, 40 mm in diameter. The settling spherical particles (Dp = 10 and 19.5 mm) had different densities (1237 to 8320 kg/m3), while the settling particles (Dp = 5 and 2.98 mm) were glass spheres. The pseudo-fluid model, which considers a liquid fluidized bed as a homogenous pseudo-fluid, predicts single particle settling velocities quite well if the ratio Dp/dp is larger than about 10. With decreasing ratio Dp/dp, the overall friction between the settling particle and the fluidized media increases. A method for predicting single particle settling velocities through a liquid fluidized bed is proposed and discussed. Following the approach of Van der Wielen et al. [L.A.M. Van der Wielen, M.H.H Van Dam, K.C.A.M. Van Luyben, On the relative motion of a particle in a swarm of different particles, Chem. Eng. Sci. 51 (2006) 995-1008], the overall friction is decomposed into a particle-fluid and a particle-particle component. The effective buoyancy force is calculated using the transition function proposed by Ruzicka [M.C. Ruzicka, On buoyancy in dispersion, Chem. Eng. Sci. 61 (2006) 2437-2446]. A simple model for predicting the collision force is proposed, as well as a correlation for the collision coefficient. The mean absolute deviation between the experimental and calculated slip velocities was 5.08%.  相似文献   

10.
The heat transfer coefficient has been measured for a heated phosphor-bronze sphere (diam. 2.0, 3.0 or 5.56 mm) added to a bed of larger particles, through which air at room temperature was passed. The bronze heat transfer sphere was attached to a very thin, flexible thermocouple and was heated in a flame to before being immersed in the bed. The cooling of the bronze sphere enabled the heat transfer coefficient, h, to be measured for a variety of U/Umf, as well as diameters of both the particles in the bed and the heat transfer sphere. It was found that before the onset of fluidisation, h rose with U, but h reached a constant value for U?Umf. These measurements indicate that in this situation (of a relatively small particle in a bed of larger particles) all the heat transfer is between the hot bronze sphere and the gas flowing over it. Consequently, a Nusselt number, based on the thermal conductivity of the gas, is easy to define and for U?Umf (i.e. a packed bed), Nu is given by
  相似文献   

11.
Mass transfer from a fluidized bed electrolyte containing inert particles has been found to depend on bed porosity and particle size. The optimum porosity was found to vary from 0.52 – 0.57 with decreasing particle size but mass transport increased with particle size.A mass transfer entry length effect was observed on the cylindrical cathode but its position within the bulk of the bed was found not to be critical, thus indicating that the hydrodynamic entry length was small. The limiting current density was found to vary as (d e/L e)0.15 whered e is the annular equivalent diameter andL e the electrode length.List of symbols ReI modified Reynolds No. =U o d p /v(1–) - ReII particle Reynolds No. =U o d p /v - ReO sedimentation Reynolds No. =U i d p v (constant value) - Ret terminal particle Reynolds No. =U t d p /v - Sc Schmidt No. =v/D - StI modified Stanton No. =k L /U o - C b bulk concentration, M cm–3 - D diffusion coefficient, cm2 s–1 - d t tube diameter, mm - d e electrode equivalent diameter, mm - d p particle diameter, mm - bed porosity - zF Faradaic equivalence - cd current density - i L limiting current density, mA cm–2 - i LO limiting current density in the absence of particles - k L mass transfer coefficient, cm s–1 - L e electrode length, mm - m, n constants or indices - v kinematic viscosity, cm2 s–1 - U o superficial velocity, cm s–1 - U i sedimentation velocity, cm s–1  相似文献   

12.
A horizontal tubular loop bioreactor (HTLB) was used for production of biomass from natural gas. Hydrodynamic characterizations (mixing time and gas hold up) and mass transfer coefficients were considered in the HTLB (L=2.2 m, H=0.4 m and D=0.03 m) as functions of design parameters, i.e., horizontal length to diameter ratio (L/D) and volume of gas-liquid separator (S) as well as operational parameters, i.e., superficial gas and liquid velocities (UsG, UsL). In addition, flow regime in different gas and liquid flow rates was investigated. It was observed from experimental results that UsL has remarkable effects on gas hold up and kLa due to its influence on mixing time. The volumetric mass transfer coefficients for oxygen (kLaO2) and methane (kLaCH4) were determined at different geometrical and operational factors. In average, the amount of oxygen consumption for metabolism is approximately 1.4 times higher than that of methane. In bubble flow regime, the HTLB was used for biomass production, too. A gas mixture of 50% methane and 50% oxygen (based on results of dry cell weight, optical density and doubling time) was the best gas mixture inlet for biomass production. The empirical correlations for mixing time, gas hold up and kLa in terms of UsG, UsL, L/D and volume of gas-liquid separator were obtained and expressed separately.  相似文献   

13.
14.
The Discrete Element Model (DEM) is a very promising modelling strategy for two-phase granular systems. However, owing to a lack of experimental measurements, validation of numerical simulations of two-phase granular systems is still an important issue. In this study, a small two-dimensional gas-fluidized bed was simulated using a Discrete Element Model. The dimensions of the simulated bed were 44 × 10 × 120 mm and the fluidized particles had a diameter dp = 1.2 mm and density ρp = 1000 kg m− 3. The influence of different drag-force correlations was investigated. Preliminary numerical experiments were also performed to study the effects of (i) the coefficient of restitution and (ii) the modelled transverse thickness of the two-dimensional bed. Experimental measurements were made using Magnetic Resonance (MR), with the comparisons between DEM simulations and experimental measurements performed on the basis of the time-averaged velocity and granular temperature profiles of the particles. It was found that the DEM simulations of the time-averaged vertical velocity of the particles agreed well with the MR measurements. The drag-force correlation proposed by [R. Beetstra, M.A. van der Hoef and J.A.M. Kuipers, Drag force of intermediate Reynolds number flow past mono- and bidispersed arrays of spheres. AIChE Journal, 53, 489-501 (2007).] showed the best agreement with the experimental data. Fair agreement was found if the granular temperature calculated by the DEM simulations was compared with MR measurements. At lower fluidization velocities and closer to the distributor the DEM simulations under-predicted both the velocity and the granular temperature measurements using MR.  相似文献   

15.
We analyze here an experimental method for the evaluation of Umf in gas fluidized beds, based on pressure fluctuation measurements in which Umf is determined by the relationship between the standard deviation of pressure measurements and fluid velocity [M. Puncochar, J. Drahos, J. Cermak, K. Selucky, Evaluation of minimum fluidizing velocity in gas fluidized bed from pressure fluctuations, Chem. Eng. Commun. 35 (1985) 81-87]. This was tested in four different particles: Sand, Microcrystalline Cellulose, FCC and Alumina using two circular plexiglass columns with internal diameters of 0.11 m and 0.14 m as the experimental apparatus. Validation of the method was made by comparing our Umf results with those obtained by the fluid-dynamic curve. The experimental data revealed that: (1) the valid range of fluid velocity in the method employed by us is broader than those observed by other authors; (2) the method is suitable for both Geldart A and B solids. Influence of probe location and type of pressure measurement (either absolute or differential) were also analyzed and discussed.  相似文献   

16.
Liquid petroleum gas (LPG) fluidized beds have potential applications in metal heating or workpiece heat treatments. The combustion of LPG and the controls of the atmosphere inside the bed and the bed temperature are very concerned. The combustion of LPG has been investigated in a pilot-scale bubbling fluidized bed with a jetting-mixing nozzle distributor and hollow corundum sphere particles of 0.867-1.212 mm in diameter and 386-870 kg/m3 in bulk density at 800-1100°C. Experiments were carried out for fuel-rich mixtures to explore the possibility to obtain mild oxidizing, non-oxidizing or reducing atmosphere in the bed. Air factor (the ratio of the volume of air actually fed into the bed to that in a stoichiometric mixture) is in between 0.3 and 1.0 and U/Umf 1.3-3.0. The distributor brings LPG and air into an intense contact sufficient to permit in-bed combustion without backfire problems. The experimental results show that the fluidized bed furnace offers excellent thermal uniformity and temperature control. The size of the combustion zone is usually larger than that of the temperature variation zone. Particle properties, initial bed height, air factor and U/Umf all affect the bed temperature profile, whereas only the air factor and U/Umf have significant effects on the combustion in the bed. The bed temperature can be adjusted by separate or combined adjusting of air factor and U/Umf.  相似文献   

17.
In order to understand the effect of temperature on slug properties, the onset velocity of slugging, slug rising velocity and slug frequency have been measured by a differential pressure method in an electrically heated gas fluidized bed of 0.1 m i.d. and height of 1.97 m and, with respect to variations in gas velocity (Umf∼0.15 m/s) and temperature (25-400 °C). Air was used as fluidizing gas and fluid catalytic cracking (FCC) catalyst particle (Geldart's group-A particle, dp=0.071 mm, ρp=1600 kg/m3) as bed material. The minimum slugging velocity was found to increase a little with bed temperature. The qualitative change in minimum slugging velocity was found to agree with the inverse of minimum fluidizing velocity as temperature was varied. As the bed temperature increased, slug frequency was found to decrease a little, whereas slug rising velocity increased. A correlation between slug rising velocity and bed temperature was proposed.  相似文献   

18.
Numerical results for a gas-fluidized bed using a 2D Eulerian model including the kinetic theory for the particulate phase were provided. The circulation patterns for various operating conditions were discussed. Modeling parameters of drag function, algebraic and transport equations of granular temperature, frictional stress model, turbulent model and discretization scheme were investigated for a bed with different gas distributors and a slotted draft tube. CFD results showed that the drag model is an important hydrodynamics parameter for gas-fluidized beds with various gas distributors. Transport and algebraic equations for granular temperature should be utilized, respectively, for beds including partial and complete sparging at Ug = 2.18 m/s. Frictional stresses play an important role for the beds containing partial sparging with and without draft tube. Discretization schemes should be examined to achieve better results. The Simonin and k-ε turbulent models can improve the CFD results at high gas velocities. Considering perforated plate distributor improves the results.  相似文献   

19.
Circulating Fluidised Beds (CFB) are attracting increasing interest for both gas-solid and gas-catalytic reactions, although the operating modes in these two cases are completely different. In modelling CFBs as reactors, the solids residence time is an important parameter. Previous studies mostly assess operations at moderate values of the solids circulation rates (≤ 100 kg/m2 s), whereas gas-catalytic reactions and e.g. biomass pyrolysis require completely different operating conditions. In the current work, Positron Emission Particle Tracking (PEPT) is used to study the movement and population density of particles in the CFB-riser.The PEPT results can be used to obtain: (i) the vertical particle movement and population density in a cross sectional area of the riser; (ii) the transport gas velocity (Utr) required in order to operate in a fully established circulation mode; (iii) the overall particle movement mode (core flow versus core/annulus flow); and (iv) the particle slip velocity (Us).Only in a core flow mode can the particle slip velocity be estimated from the difference between the superficial gas velocity (U) and the particle terminal velocity (Ut). The slip velocity is lower than U − Ut outside the core flow mode. To operate in core flow, the superficial gas velocity should exceed Utr by approximately 1 m/s and the solids circulation rate should exceed 200 kg/m2 s.  相似文献   

20.
L-valves are widely used in circulating fluidized beds (CFB) to control the solid circulation rate. Positron emission particle tracking (PEPT) is used to view and study the real-time particle motion in the L-valve. The paper presents experimental results of the solid motion and solid flux in the L-valve, Gs, as a function of the superficial injection air velocity, U. Results are compared with earlier work. The size of the L-valve is 4.5 cm I.D. Two different experimental configurations (L-valve discharge in a CFB riser and free discharge) were used. The L-valve flow regime is stable until approximately 6 U / Umf, with proportionality between solid flux and U / Umf. At a higher U / Umf, unsteady fluctuations in the solid flow gradually increase due to cavity formation around the L-valve elbow. Increasing the air flow even further, a maximum flow is reached, corresponding to the maximum discharge rate through the cyclone or hopper apex. PEPT has also confirmed the existence of a dune flow. For the first time, it gives quantitative data of the velocity profile of the dune flow which is governed by two important factors. The first factor is the distance of solids from the base of the L-valve, with solid velocity increasing away from the base. The second factor is the location of solids with respect to the dune, i.e. solid velocity is minimum at the base of the dunes and maximum at the top of the dunes. The average voidage in the L-valve is approximately constant and independent of U.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号