首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The heterogeneous flow structure in gas-solids riser reactors is typically represented by an upward solids flow in the core region and a back-mixing downward solids flow in the wall region. The hydrodynamic and reaction characteristics in these two regions are highly different, as most reactions with fresh catalyst solids occur in the core region and mostly spent catalyst solids are found in the wall region. Gross understanding on gas-solids riser flow can be conveniently obtained from a cross-section averaged one-dimensional modeling approach, which is probably only valid for the core region. The success of such an approach, however, has to rely on the appropriate modeling of controlling mechanisms of riser flows. Our recent studies show that commonly-employed Richardson-Zaki equation overestimates the hydrodynamic forces in the dense phase and acceleration regimes; there is also a non-negligible effect of solids collision on solids acceleration, and the wall effect should be taken into account in terms of wall boundary and back flow mixing. In this paper we propose a new mechanistic modeling to describe the hydrodynamics of upward flow of solids in a gas-solids riser, with new formula of hydrodynamic phase interactions. The modeling results are validated against published measurements of pressure and solids volume fraction in a wide range of particle property, gas velocity and solid mass flux. Parametric effects of operation conditions such as transport gas velocity and solid mass flux on hydrodynamic characteristics of riser flows are predicted.  相似文献   

2.
A computational fluid dynamics (CFD) model was developed to simulate the hydrodynamics of gas-solid flow in a circulating fluidized bed (CFB) riser at various fluidization conditions using the Eulerian-Granular multiphase model. The model was evaluated comprehensively by comparing its predictions with experimental results reported for a CFB riser operating at various solid mass fluxes and superficial gas velocities. The model was capable of predicting the main features of the complex gas-solids flow, including the cluster formation of the solid phase along the walls, for different operating conditions. The model also predicted the coexistence of up-flow in the lower regions and downward flow in the upper regions at the wall of the riser for high gas velocity and solid mass flux, as reported in the literature. The predicted solid volume fraction and axial particle velocity were in good agreement with the experimental data within the high density fast fluidization regime. However, the model showed some discrepancy in predicting the gas-solid flow behavior in the riser operating in dense suspension up-flow and low density fast fluidization regimes.  相似文献   

3.
Effect of bluff internals on the hydrodynamics and lateral gas mixing was studied in a 0.186m ID high-density riser. With the bluff internals, the extremely non-uniform radial profiles of solid fraction and particle velocity become flat and the dense downflow layer near the wall disappears, indicating the significant enhancement of solid turbulence introduced by the internals. The fluctuation velocity and solid fraction transient signal analysis indicates a significant increase in fluctuation intensity near the wall region. The length influenced by the internals on the flow structure is about 1 meter. The lateral gas dispersion coefficient increases significantly as the bluff internals exist in the riser.  相似文献   

4.
The influence of solid-phase wall boundary condition in terms of specularity coefficient and particle–wall restitution coefficient on the flow behavior of spouted beds was investigated using two-fluid model approach in the computational fluid dynamics software FLUENT 6.3. Parametric studies of specularity coefficient and particle–wall restitution coefficient were performed to evaluate their effects on the flow hydrodynamics in terms of fountain height, spout diameter, pressure drop, local voidage and particles velocity. The numerical predictions were compared with available experimental data in the literatures to obtain the suitable values of specularity coefficient and particle–wall restitution coefficient for spouted beds. The simulated results show that the solid-phase wall boundary condition plays an important role in CFD modeling of spouted beds. The specularity coefficient has a pronounced effect on the spouting behavior and a small specularity coefficient (0.05) can give good predictions, while the particle–wall restitution coefficient is not critical for the holistic flow characteristics.  相似文献   

5.
6.
Catalytic cracking reaction and vaporization of gas oil droplets have significant effects on the gas solid mixture hydrodynamic and heat transfer phenomena in a fluid catalytic cracking (FCC) riser reactor. A three-dimensional computational fluid dynamic (CFD) model of the reactor has been developed considering three phase hydrodynamics, cracking reactions, heat and mass transfer as well as evaporation of the feed droplets into a gas solid flow. A hybrid Eulerian-Lagrangian method was applied to numerically simulate the vaporization of gas oil droplets and catalytic reactions in the gas-solid fluidized bed. The distributions of volume fraction of each phase, gas and catalyst velocities, gas and particle temperatures as well as gas oil vapor species were computed assuming six lump kinetic reactions in the gas phase. The developed model is capable of predicting coke formation and its effect on catalyst activity reduction. In this research, the catalyst deactivation coefficient was modeled as a function of catalyst particle residence time, in order to investigate the effects of catalyst deactivation on gas oil and gasoline concentrations along the reactor length. The simulation results showed that droplet vaporization and catalytic cracking reactions drastically impact riser hydrodynamics and heat transfer.  相似文献   

7.
8.
Following the previous article [Du, W., Bao, X., Xu, J., Wei, W., 2006. Computational fluid dynamics (CFD) modeling of spouted bed: assessment of drag coefficient correlations. Chemical Engineering Science 61 (5), 1401-1420], this contribution describes the influences of the frictional stress, maximum packing limit and coefficient of restitution of particles on CFD simulation of spouted beds. Using the two-fluid method embedded in the commercial CFD simulation package Fluent 6.1, the spouting hydrodynamics of a cylindrical-conical spouted bed was simulated and verified with the experimental data of He et al. [He, Y.L., Lim, C.J., Grace, J.R., Zhu, J.X., Qin, S.Z., 1994a. Measurements of voidage profiles in spouted beds. Canadian Journal of Chemical Engineering 72 (4), 229-234; He, Y.L., Qin, S.Z., Lim, C.J., Grace, J.R., 1994b. Particle velocity profiles and solid flow patterns in spouted beds. Canadian Journal of Chemical Engineering 72(8), 561-568]. The results showed that, for coarse particles, the frictional stress is important only for the annulus computation and has no obvious effects on the hydrodynamics of the solids flow in the spout region. The specification of the maximum packing limit could significantly affect the properties of the pseudo-fluid phase of the particles by changing the radial distribution function. The strong dependence of the pseudo-fluid properties of the particle phase, such as pressure, bulk viscosity and shear viscosity, on the granular temperature accounts for the influence of the coefficient of restitution of particles on CFD modeling. The solids volume fraction at loose packing state is suitable for spouted bed simulations, and a pretest of the coefficient of restitution of particles must be conducted when no experimental datum is available.  相似文献   

9.
The influence of the solid-phase wall boundary condition was investigated in Eulerian-Eulerian numerical simulations of a bubbling fluidized bed. Parametric studies of the particle-wall restitution coefficient and specularity coefficient were performed to evaluate their impact on the predicted flow hydrodynamics in terms of bed expansion, local voidage, and solid velocity. Both two- and three-dimensional simulations were conducted and compared with available experimental data on solid velocity and bubble properties. It is found that the wall effect plays an important role in CFD models. Such factors as the voidage at the bubble boundary, averaging method, and minimum bubble size also influence the mean bubble diameter.  相似文献   

10.
In order to develop predictive process models in conical fluidized beds, there is an ongoing search for experimental methods and simulation tools to measure and model hydrodynamics parameters. Accordingly, experiments carried out in a conical fluidized bed containing micrometric TiO2 particles with a wide particle size distribution. An optical fiber technique was employed to determine the effect of particles loading on the solid volume fraction. The axial and radial profiles of solid volume fraction have then been determined to evaluate the sensitivity of different models, including Syamlal-O?Brien (1988), Arastoopour et al., (1990) and Gidaspow (1994) drag models. The Eulerian-Eulerian model with frictional stress models and three different boundary conditions (BCs), consisting of no-slip, partial-slip and free-slip have been used in the numerical simulations. The Gidaspow model with the partial-slip BC gives the best agreement with experimental data for different particle loadings.  相似文献   

11.
The effect of solid boundaries on the closure relationships for filtered two‐fluid models for riser flows was probed by filtering the results obtained through highly resolved kinetic theory‐based two‐fluid model simulations. The closures for the filtered drag coefficient and particle phase stress depended not only on particle volume fraction and the filter length but also on the distance from the wall. The wall corrections to the filtered closures are nearly independent of the filter length and particle volume fraction. Simulations of filtered model equations yielded grid length independent solutions when the grid length is ~half the filter length or smaller. Coarse statistical results obtained by solving the filtered models with different filter lengths were the same and corresponded to those from highly resolved simulations of the kinetic theory model, which was used to construct the filtered models, thus verifying the fidelity of the filtered modeling approach. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

12.
The dilute turbulent steady-state gas-particle flows in flat horizontal channels with different wall surface roughness are considered. The kinetic theory of granular flows has been employed for modeling. The new approach to defining boundary conditions for a solid phase, which is based on the tangential restitution coefficient, has been applied. The model has been validated by comparison of the computed data with the experimental results.  相似文献   

13.
循环硫化床上升管中动态行为的拟流体模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
The kinetic theory of granular flow (KTGF) is modified to fit the Einstein′s equation for effective viscosity of dilute flow. A pseudo-fluid approach based on this modified KTGF is used to simulate the dynamic formation and dissipation of clusters in a circulating fluidized bed riser. The agglomeration of particles reduces slip velocity within particle clusters, and hence results in two reverse trends: discrete particles are lifted by air while particle clusters fall down along the wall. The dynamic equilibrium of these two types of motion leads to the characteristic sigmoid profile of solid concentration along the longitudinal direction. The predicted solid velocity, lateral and longitudinal profiles of solid volume fraction and annulus thickness are in reasonable agreement with experimental results.  相似文献   

14.
A circulating fluidized bed (CFB) is widely applied in many industries because it has high efficiency. To develop and improve the process, an understanding of the hydrodynamics inside the CFB is very important. Computational fluid dynamics (CFD) represents a powerful tool for helping to understand the phenomena involved in the process. In this study, a CFD model was developed to represent a cold model of the laboratory scale CFB which was designed to study the hydrodynamics of a CFB using commercial CFD software. The Eulerian approach with kinetic theory of granular flow was used for simulating the hydrodynamics inside the system. After proper tuning of relevant parameters, the pressure profile along the equipment from the simulation was well agreed with that from the experiment. The simulation result expresses the hydrodynamic parameters of the slug flow such as solid volume fraction, gas and solid velocities and granular temperature in the riser.  相似文献   

15.
Granular flows are complex flows of solid granular material which are being studied in several industries. However, it has been a challenge to understand them because of their non-linear and multiphase behavior. The present experimental work investigates granular flows undergoing shear, by specifically studying the interaction between rough surfaces and granular flows when the global solid fraction and the material comprising the rough shearing surface are varied. A two-dimensional annular shear cell, with a stationary outer ring and inner driving wheel, and digital particle tracking velocimetry (DPTV) technique were used to obtain local granular flow properties such as velocity, local solid fraction, granular temperature, and slip. A customized particle drop test apparatus was built to experimentally determine the coefficient of restitution (COR) between the granular and surface materials using high-speed photography. Results showed that wheel surface materials that produce higher COR values exhibit higher velocity and granular temperature values near the wheel, and lower slip velocities. The local solid fraction appears inversely related to the COR values. The global solid fraction seemed to correspond with velocity and granular temperature, while displaying an inverse relationship to slip. Results also showed an initial decrease in the kinetic energy of the flow as the global solid fraction increased, due to the formation of a distinct contact region. This was followed by a rise in kinetic energy as the global solid fraction continued to increase, based on the increase of particles present in the kinetic region of the flow.  相似文献   

16.
For especially highly concentrated suspensions, slip at the wall is the controlling phenomenon of their rheological behavior. Upon correction for slip at the wall, concentrated suspensions were observed to have non‐Newtonian behavior. In this study, to determine the true rheological behavior of model concentrated suspensions, “multiple gap separation method” was applied using a parallel‐disk rheometer. The model suspensions studied were polymethyl methacrylate particles having average particle sizes, in the range of 37–231 μm, in hydroxyl terminated polybutadiene. The effects of particle size and solid particle volume fraction on the wall slip and the true viscosity of model concentrated suspensions were investigated. It is observed that, as the volume fraction of particles increased, the wall slip velocity and the viscosity corrected for slip effects also increased. In addition, for model suspensions in which the solid volume fraction was ≥81% of the maximum packing fraction, non‐Newtonian behavior was observed upon wall slip correction. On the other hand, as the particle size increased, the wall slip velocity was observed to increase and the true viscosity was observed to decrease. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 439–448, 2005  相似文献   

17.
Gas mixing in a tall narrow fluidized bed operated in the slugging fluidization regime is simulated with the aid of computational fluid dynamics. In the first part, a parametric study is conducted to investigate the influence of various parameters on the gas mixing. Among the parameters studied, the specularity coefficient for the partial‐slip solid‐phase wall boundary condition had the most significant effect on gas mixing. It was found that the solid‐phase wall boundary condition needs to be specified with great care when gas mixing is modeled, with free slip, partial slip and no‐slip wall boundary conditions giving substantial differences in the extent of gas back mixing. Axial and radial tracer concentration profiles for different operating conditions are generally in good agreement with experimental data from the literature. Detailed analyses of tracer back mixing are carried out in the second part. Two parameters, the tracer backflow fraction and overall gas backflow fraction, in addition to axial profiles of cross‐sectional averaged tracer concentrations, are evaluated for different flow conditions. Qualitative trends are consistent with reported experimental findings. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

18.
Experiments involving a gas–solid, pilot-scale circulating fluidized bed (CFB) have been carried out, with a focus on species segregation measurements in a riser. Three mixtures were considered: (i) a binary mixture with particles of different sizes (dave) but same material density (ρs), (ii) a binary mixture with particles of different material densities (ρs) but same size (dave), and (iii) a continuous particle size distribution (PSD). Local measurements of the composition (i.e., species segregation) of each mixture were obtained over a range of operating conditions. Similar to previous works, the results show that the more massive species (i.e., greater dave or ρs) preferentially segregates toward the wall in all cases. Several new trends were also observed. First, for the binary mixtures, composition of the more massive species increases with riser height at the wall under some operating conditions. The operating conditions that cause this phenomenon are mutually exclusive for the size-difference and density-difference systems. Second, for the continuous PSD, radial segregation is observed even when there is a net positive flux in the annular region, contrary to previous findings which indicated segregation only for conditions leading to a net downward flux in the annular region. Finally, two qualitative differences between the binary and continuous mixtures were noted: (i) a monotonic decrease in species segregation is observed for the binary mixtures with an increase in the solid loading (m), while a non-monotonic trend is observed for the continuous PSD, and (ii) while the shape of the radial segregation profile is flattest at the riser bottom for the binary mixtures, the flattest radial profile is at the riser top for the continuous PSD.  相似文献   

19.
This paper presents a numerical study of the particle cluster behavior in a riser/downer reactor by means of combined computational fluid dynamics (CFD) and discrete element method (DEM), in which the motion of discrete particles is obtained by solving Newton's equations of motion and the flow of continuum gas by the Navier-Stokes equations. It is shown that the existence of particle clusters, unique to the solid flow behavior in such a reactor, can be predicted from this first principle approach. The results demonstrate that there are two types of clusters in a riser and downer: one is in the near wall region where the velocities of particles are low; the other is in the center region where the velocities of particles are high. While the extent of particle aggregation appears to be similar, the duration time for the first type in a downer is shorter than in a riser. Furthermore, it is demonstrated that the formation of clusters is affected by a range of variables related to operational conditions, particle properties, and bed properties and geometry. The increase of solid volume fraction, sliding and rolling friction between particles or between particles and wall, or damping coefficient can enhance the formation of clusters. The use of multi-sized particles can also promote the formation of clusters. But the increase of gas velocity or use of a wider bed can suppress the formation of clusters. The van der Waals force may enhance the formation of clusters when solid concentration is high but suppress the formation of clusters near the wall region when solid concentration is low.  相似文献   

20.
针对流化床煤气化过程中需要长气固接触时间和高固体浓度,开发了耦合灰熔聚流化床和提升管的多段分级转化流化床。为了研究多段分级转化流化床提升管中局部颗粒速度的径向、轴向分布,在不同的操作条件下,采用PV-6型颗粒速度测量仪在冷态实验装置中系统测定提升管内局部颗粒速度。实验结果表明:提升管中任何径向、轴向位置的颗粒速度随着操作气速的增大而增大,随循环量的增加而减小。操作条件对中心区颗粒速度变化的影响明显高于边壁区。颗粒的加速首先发生在提升管中心区域,然后向边壁区域扩展。颗粒速度径向分布的不均匀性沿轴向逐渐增大,并且受操作气速影响比较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号