首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用碱法化学改性生姜不溶性膳食纤维,研究了碱液浓度、料液比、反应温度、反应时间4个因素对改性后的可溶性膳食纤维(SDF)得率以及不溶性膳食纤维(IDF)持水力的影响,在单因素实验的基础上进行正交实验,得到碱法改性生姜中不溶性膳食纤维的最优工艺条件为:碱液浓度为6 g/100 m L、料液比为1:40、反应温度为60℃、反应时间为60 min,在最优工艺下得到的改性IDF持水力为19.13 g/g,SDF得率为42.1%。并通过扫描电镜对改性前后的生姜膳食纤维进行了表征,实验结果表明通过化学改性可以明显改善生姜膳食纤维的品质。  相似文献   

2.
以红雪茶渣为原料,通过碱提取法制备水不溶性膳食纤维,在考虑碱溶液浓度、料液比、处理时间和处理温度的基础上进行四因素三水平正交试验,确定减法提取红雪茶渣水不溶性膳食纤维的最佳工艺,分析其膨胀力和持水力,以及对NO_2~-和胆酸钠的吸附作用。结果表明,红雪茶渣水不溶性膳食纤维碱处理的最佳工艺为:碱液浓度0.20 mol/L,碱处理时间1.5 h,碱处理料液比1︰50(g/m L),碱处理温度50℃,此时得率为37.00%±1.71%。以最佳工艺条件提取的红雪茶渣水不溶性膳食纤维其膨胀力、持水力分别为3.25 m L/g和2.21 g/g,并对NO2-和胆酸钠具有一定的吸附作用,可以作为新膳食纤维源开发。  相似文献   

3.
以石阡苔茶茶渣作为实验材料,碱提法对水不溶性膳食纤维进行提取。采用Design-Expert V8.0软件中的Box-Behnken(BBD)中心组合原理设计响应面实验,考察浸提温度、料液比、碱浓度、浸提时间对水不溶性膳食纤维提取率的影响,优化提取工艺,结果表明:优化的最佳提取工艺条件为:浸提温度32.6℃、碱浓度0.2mol/L、浸提时间50min、料液比1∶13.5(g/m L),茶渣中水不溶性膳食纤维的提取率为78.66%;性质研究的结果表明:提取得到水不溶性膳食纤维的持水力为183.92%,溶胀度为2.83m L/g。由此可知,响应面法优化提取水不溶性膳食纤维具有时间短、能耗低、提取率高等特点。  相似文献   

4.
以新疆野山杏为原料,采用酸法、碱法和酸碱共处理法三种化学方法提取不溶性膳食纤维,通过正交实验对影响酸法、碱法、酸碱共处理法三种提取不溶性膳食纤维工艺的主要因素进行了比较研究,并比较其性能特性,获得了三种化学方法提取野山杏果肉不溶性膳食纤维的最佳工艺参数,酸法提取的最佳工艺为:料液比1∶10,酸液浓度3%,提取温度30℃,提取时间80min,在此工艺条件下不溶性膳食纤维的得率为25.4%,持水力为12.0g/g,溶胀性为6.5mL/g;碱法提取的最佳工艺为:料液比1∶10,碱液浓度10%,提取温度30℃,提取时间20min,在此工艺条件下不溶性膳食纤维的得率为24.7%,持水力为13.36g/g,溶胀性为7mL/g;酸碱共处理法最佳工艺参数为:碱处理料液比1∶10,碱处理时间30min,碱浓度10%,酸处理料液比1∶10,酸处理时间90min,在此工艺条件下不溶性膳食纤维的得率为16.5%,持水力为33.2g/g,溶胀性为10.4mL/g。  相似文献   

5.
利用苹果渣提取膳食纤维的工艺研究   总被引:1,自引:0,他引:1  
以苹果渣为原料,采用碱液浸提法制备水不溶性膳食纤维,考察了提取温度、时间、料液比、氢氧化钠溶液浓度等影响因素,通过正交试验优化的提取工艺为:料液比1∶10,0.5mol/L的氢氧化钠溶液,提取温度75℃,提取时间3h,此条件下膳食纤维的得率为20%。  相似文献   

6.
刘倩倩 《食品工业科技》2019,40(14):203-207
以绿豆皮为原料,采用超声波辅助碱法提取绿豆皮不溶性膳食纤维,通过单因素实验来探讨提取时间、提取温度、超声功率、碱液浓度、液料比五个因素对不溶性膳食纤维提取率的影响,并通过响应面分析来优化工艺条件。结果表明:采用碱液浓度3.0 mol/L,液料比15:1 mL/g,温度52 ℃,在350 W超声波作用下提取148 min,不溶性膳食纤维提取率最大为66.28%±0.052%,此工艺可以有效地从绿豆皮中提取不溶性膳食纤维。  相似文献   

7.
以茭白为原料,采用酸法、碱法、酶法对其不溶性膳食纤维的提取工艺及性能进行研究。正交实验结果表明,酸法的最佳提取工艺条件为:料液比1∶10,提取温度70℃,提取时间60min,p H4,得率为51.45%;碱法的最佳提取工艺条件为:提取温度80℃,提取时间120min,p H11,得率为59.12%;酶法提取最佳工艺条件为:料液比1∶10,提取时间10min,α-淀粉酶用量为0.3%,得率为52.18%。酶法制得的茭白不溶性膳食纤维的持水力和膨胀力最强,分别为4.25g/g、8.20m L/g,而酸法提取的茭白不溶性膳食纤维的性能最差,分别为3.53g/g、3.90m L/g。  相似文献   

8.
薇菜水不溶性膳食纤维提取工艺研究   总被引:1,自引:0,他引:1  
采用碱浸法提取薇菜中水不溶性膳食纤维。首先对影响碱法提取率的4个因素:料液比、碱液浓度、反应温度及提取时间进行了单因素实验,再通过正交实验确定了碱法最佳工艺条件。结果表明:料液比为1∶10、碱液浓度为0.5mol/L、碱浸温度为65℃、碱浸时间为1h,在此工艺条件下,薇菜水不溶性膳食纤维的提取率达到41.81%。  相似文献   

9.
以梨渣为原料,用酶与碱结合提取的方法,探讨了酶用量、料液比、氢氧化钠溶液浓度、温度和时间对酶碱法提取梨渣水不溶性膳食纤维得率的影响,并对其脱色工艺进行了研究。结果表明,用淀粉酶4 U/g在p H6.0下处理后,在料液比1 g∶15 m L、氢氧化钠溶液浓度1.0 mol/L,温度50℃,时间1 h的条件下提取,梨渣水不溶性膳食纤维的得率最高,达到12.9%。最优的脱色条件是H2O2溶液体积浓度8%,温度60℃,时间3 h。产品的膨胀力、持水力分别达到6.167 g/m L、7.1 g/g。  相似文献   

10.
《食品与发酵工业》2014,(1):250-253
以梵净山野生阳荷作为实验材料,应用酸碱结合法制备阳荷水不溶性膳食纤维。采用L9(34)正交表进行实验设计,考察料液比、碱浓度、浸提温度、提取时间对水不溶性膳食纤维提取率的影响,优化水不溶性膳食纤维的提取条件,得出水不溶性膳食纤维的佳提取工艺为:料液比1∶45、碱浓度0.25 mol/L、浸提温度52℃、提取时间100 min,在此优化条件下,IDF的提取率为90.73%,提取得到的IDF溶胀度为8.6 mL/g。持水力为2.315 g/g。研究结果表明,梵净山野生阳荷是提取水不溶性膳食纤维的良好原料。  相似文献   

11.
以火龙果皮为原料,采用酸碱结合法提取水不溶性膳食纤维(IDF),通过单因素实验和响应面分析,探讨Na OH质量分数、碱提时间、碱提温度、碱提液料比、酸提温度、酸提时间、酸提液料比七个因素对火龙果皮中水不溶性膳食纤维得率和纯度的影响,并对提取工艺条件进行优化。结果表明,酸碱结合法提取火龙果IDF的最佳工艺条件为Na OH质量分数4.3%、碱提温度46.5℃、碱提时间60 min、碱提液料比15∶1(m L/g)、酸提温度77.4℃、酸提时间1.5 h、酸提液料比15∶1(m L/g),在此工艺条件下,IDF得率30.29%,纯度达到94.78%,表明该工艺可行。  相似文献   

12.
采用单因素分析法分析永川秀芽茶渣不溶性膳食纤维(IDF)提取工艺,选取碱液浓度、液料比、处理时间和处理温度四个因素,对碱提法关键因素进行优化,通过绘制折线图得到每个影响因素的3水平因子,设计L9(34)正交试验得出不溶性膳食纤维提取的最佳工艺条件。结果表明:永川秀芽茶渣的最佳工艺参数为碱液浓度0.5 mol/L、液料比30:1、处理时间75 min、处理温度50℃。在此条件下,不溶性膳食纤维得率为46.95%,为开发永川秀芽高附加值产品提供科学依据。  相似文献   

13.
酱油渣水不溶性膳食纤维提取工艺研究   总被引:2,自引:0,他引:2  
以酱油厂生产酱油废渣为原料,研究采用碱处理法从酱油渣中提取水不溶性膳食纤维最佳工艺条件。结果表明,各因素对提取膳食纤维影响顺序为:碱浓度、提取温度、提取时间、料液比;最佳提取条件组合是碱浓度4%、提取温度60℃、提取时间60min、料液比16ml/g;在此工艺条件下,水不溶性膳食纤维提取率达32.37%,得到水不溶性膳食纤维持水力为5.65g/g,溶胀度为4.08ml/g。  相似文献   

14.
以加工红参膏后的废弃物红参渣为原料,采用超声波辅助碱法提取不溶性膳食纤维,通过单因素试验考察了提取时间、提取温度、液固比、碱液浓度等4个因素对红参不溶性膳食纤维得率的影响,在单因素试验基础上,通过响应面分析对提取条件进行优化,确定最佳提取工艺。结果表明,超声波辅助碱法提取红参渣中不溶性膳食纤维的最佳工艺为:提取温度62℃,提取时间80 min,液固比24︰1 mL/g,碱液浓度1.1%。在此条件下,不溶性膳食纤维得率可达57.39%,表明该工艺可用于红参渣中不溶性膳食纤维的提取。  相似文献   

15.
金盏花渣不溶性膳食纤维的提取   总被引:1,自引:0,他引:1  
以富舍不溶性膳食纤维的金盏花渣为原料,通过单因素实验和正交实验研究了化学法从金盏花渣中提取不溶性膳食纤维的工艺条件,测定了不溶性膳食纤维的性能.实验结果表明,提取金盏花渣不溶性膳食纤维的最佳工艺条件为碱液浓度1.3mol·L-1,料液比1:13(g/mL),提取时间110min,提取温度40℃.在此条件下不溶性膳食纤维的提取率为60.75%,颜色为近白色,纯度为40.59%,持水力为10.8g/g,溶胀性为12.68mL/g.  相似文献   

16.
以刺梨为原材料,采用微波辅助法提取刺梨水不溶性膳食纤维。在单因素实验的基础上,采用DesignExpert V8.0.6软件设计响应面实验优化微波辅助法提取刺梨中水不溶性膳食纤维(IDF)的工艺。结果表明:影响微波辅助法提取IDF得率的主次因素为:提取温度微波功率强度液料比微波时间。微波辅助提取刺梨IDF的最佳工艺参数为微波功率强度345 W/g,提取温度:63℃,微波时间:12 min,液料比:20 m L/g,此条件下刺梨IDF得率可达80.02%,与IDF得率理论值比较,其相对误差约为0.22%,且重复性好,验证了数学模型的准确可靠性。  相似文献   

17.
以菠萝果渣为原料,分别采用酸法和碱法制备水溶性和不溶性膳食纤维,初步分析比较两种方法制备的水不溶性膳食纤维的理化性质。结果表明:酸法制备水溶性膳食纤维的最佳条件为温度90℃、pH1.0、时间90min、料液比1:10,其得率为8.1%(以干渣计),水不溶性膳食纤维提取条件为温度60℃、pH2.0、时间60min,得率为24.4%(以干渣计),水不溶性膳食纤维的膨胀力高达9.25mL/g,持水力为5.85g/g,持油力为1.35g/g、阳离子交换能力为0.21mmol/g;碱法制备的水不溶性膳食纤维最佳提取条件为碱液质量分数1%、料液比1:15、时间40min、温度50℃,其得率为62.80%,持水力为3.82g/g、膨胀力为10.66mL/g、持油力为1.75g/g、阳离子交换能力为0.27mmol/g。故碱法制备的水不溶性膳食纤维得率更高,性质相对较好。  相似文献   

18.
以北川干制羊肚菌为原料,通过单因素试验和响应面试验对化学法提取羊肚菌中可溶性膳食纤维的工艺条件进行优化,研究料液比、碱液浓度、提取温度和提取时间对羊肚菌可溶性膳食纤维得率的影响。结果表明,最佳工艺参数为料液比1∶20(g/mL)、提取液浓度0.75%、提取温度63℃、提取时间60min,在此工艺条件下羊肚菌可溶性膳食纤维得率为33.06%。  相似文献   

19.
通过探讨pH、料液比、温度和时间对膳食纤维得率的影响优化了酸碱两步提取制备椰蓉膳食纤维的化学法提取工艺。结果表明,在碱处理条件为:pH为10,料液比1︰25(g/m L),温度50℃,时间120 min;酸处理条件为pH为4,料液比为1︰15(g/m L),温度为40℃,时间为100 min时椰蓉膳食纤维的得率最高,达77.01%。  相似文献   

20.
响应面法优化火棘水不溶性膳食纤维提取工艺   总被引:1,自引:0,他引:1  
以火棘果为原料,采用碱水解法提取膳食纤维,通过单因素试验和响应面分析,探讨碱液质量分数、浸提时间、浸提温度和液料比对火棘水不溶性膳食纤维提取率和纯度的影响,并对提取工艺条件进行优化。结果表明,碱水解法提取火棘膳食纤维的最佳工艺条件为碱液质量分数1.00%、浸提时间3.00h、浸提温度77.8℃、液料比17:1(mL/g),在此工艺条件下水不溶性膳食纤维的提取率56.89%、纯度达到92.74%,表明该工艺可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号