首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stretchable carbon nanotube strain sensor for human-motion detection   总被引:1,自引:0,他引:1  
Devices made from stretchable electronic materials could be incorporated into clothing or attached directly to the body. Such materials have typically been prepared by engineering conventional rigid materials such as silicon, rather than by developing new materials. Here, we report a class of wearable and stretchable devices fabricated from thin films of aligned single-walled carbon nanotubes. When stretched, the nanotube films fracture into gaps and islands, and bundles bridging the gaps. This mechanism allows the films to act as strain sensors capable of measuring strains up to 280% (50 times more than conventional metal strain gauges), with high durability, fast response and low creep. We assembled the carbon-nanotube sensors on stockings, bandages and gloves to fabricate devices that can detect different types of human motion, including movement, typing, breathing and speech.  相似文献   

2.
Conductive films that are both stretchable and flexible could have applications in electronic devices, sensors, actuators and speakers. A substantial amount of research has been carried out on conductive polymer composites, metal electrode-integrated rubber substrates and materials based on carbon nanotubes and graphene. Here we present highly conductive, printable and stretchable hybrid composites composed of micrometre-sized silver flakes and multiwalled carbon nanotubes decorated with self-assembled silver nanoparticles. The nanotubes were used as one-dimensional, flexible and conductive scaffolds to construct effective electrical networks among the silver flakes. The nanocomposites, which included polyvinylidenefluoride copolymer, were created with a hot-rolling technique, and the maximum conductivities of the hybrid silver-nanotube composites were 5,710 S cm?1 at 0% strain and 20 S cm?1 at 140% strain, at which point the film ruptured. Three-dimensional percolation theory reveals that Poisson's ratio for the composite is a key parameter in determining how the conductivity changes upon stretching.  相似文献   

3.
The development of strain‐insensitive stretchable transparent conductors (TCs) is essential for manufacturing stretchable electronics. Despite recent progress, achieving a high optoelectronic performance under applied strain of 50% continues to present a significant challenge in this research field. Herein, an ultratall and ultrathin high aspect ratio serpentine metal structure is described that exhibits a remarkable stretching ability (the resistance remains constant under applied strain of 100%) and simultaneously provides an excellent transparent conducting performance (with a sheet resistance of 7.6 Ω ?1 and a transmittance of 90.5%). It is demonstrated that the highly stretchable transparent conducting properties can be attributed to the high aspect ratio feature. A high aspect ratio (aspect ratio of 17–367) structure permits facile deformation of the serpentine structure with in‐plane motion, leading to a high stretching ability. In addition, this structural feature avoids the classic tradeoff between optical transmittance and electrical conductance, providing a high electrical conductance without decreasing the optical transmittance. The practical utility of these devices is tested by using these TCs as stretchable interconnectors among LEDs or in wearable VOC gas sensors.  相似文献   

4.
Advances in materials science and the desire for next‐generation electronics have driven the development of stretchable and transparent electronics in the past decade. Novel applications, such as smart contact lenses and wearable sensors, have been introduced with stretchable and transparent form factors, requiring a deeper and wider exploration of materials and fabrication processes. In this regard, many research efforts have been dedicated to the development of mechanically stretchable, optically transparent materials and devices. Recent advances in stretchable and transparent electronics are discussed herein, with special emphasis on the development of stretchable and transparent materials, including substrates and electrodes. Several representative examples of applications enabled by stretchable and transparent electronics are presented, including sensors, smart contact lenses, heaters, and neural interfaces. The current challenges and opportunities for each type of stretchable and transparent electronics are also discussed.  相似文献   

5.
The concept of realizing electronic applications on elastically stretchable “skins” that conform to irregularly shaped surfaces is revolutionizing fundamental research into mechanics and materials that can enable high performance stretchable devices. The ability to operate electronic devices under various mechanically stressed states can provide a set of unique functionalities that are beyond the capabilities of conventional rigid electronics. Here, a distinctive microtectonic effect enabled oxygen‐deficient, nanopatterned zinc oxide (ZnO) thin films on an elastomeric substrate are introduced to realize large area, stretchable, transparent, and ultraportable sensors. The unique surface structures are exploited to create stretchable gas and ultraviolet light sensors, where the functional oxide itself is stretchable, both of which outperform their rigid counterparts under room temperature conditions. Nanoscale ZnO features are embedded in an elastomeric matrix function as tunable diffraction gratings, capable of sensing displacements with nanometre accuracy. These devices and the microtectonic oxide thin film approach show promise in enabling functional, transparent, and wearable electronics.  相似文献   

6.
Flexible strain sensors have experienced growing demand due to their several potential applications, such as personalized health monitoring, human motion detection, structural health monitoring, smart garments, and robots. Recently, several academic results have been reported concerning flexible and stretchable strain sensors. These reports indicate that the materials and design methods have an important influence on the performance of strain sensors. Carbon-based nanomaterials including carbon-based nanofibers, carbon nanotubes, graphene, and carbon black nanoparticles play a key role in the fabrication of flexible strain sensors with excellent properties. In terms of design, carbon-based nanomaterials are generally combined with polymers to maintain the flexibility and stability of a strain sensor. Various combined methods were successfully developed using different assembly structures of carbon-based nanomaterials in polymers, such as uniform mixing and ordered structures, including films, fibers, nanofiber membranes, yarns, foams, and fabrics. The working mechanisms of the flexible strain sensors, including changing the conductive network between overlapped nanomaterials, tunneling effect, and crack propagation, are also different compared with that of traditional semiconductor and metal sensors. The effects of the carbon-based nanomaterial structures in polymers on the strain sensing performance have been comprehensively studied and analyzed. The potential applications of flexible strain sensors and current challenges have been summarized and evaluated. This review provides some suggestions for further development of flexible and stretchable strain sensors with outstanding performance.  相似文献   

7.
The fabrication of flexible transparent conducting films (TCFs) is important for the development of the next-generation flexible devices. In this study, we used double-walled carbon nanotubes (DWCNTs) as the starting material and described a fabrication method of flexible TCFs. We have determined in a quantitative way that the key factors are the length and the dispersion states of the DWCNTs as well as the weight-ratios of dispersant polymer/DWCNTs. By controlling such factors, we have readily fabricated a flexible highly transparent (94% transmittance) and conductive (surface resistivity = 320 Ω sq−1) DWCNT film without adding any chemical doping that is often used to reduce the surface resistivity. By applying a wet coating, we have succeeded in the fabrication of large-scale conducting transparent DWCNT films based on the role-to-role method.  相似文献   

8.
We report on the synthesis of thin, transparent, and highly catalytic carbon nanotube films. Nanotubes catalyze the reduction of triiodide, a reaction that is important for the dye-sensitized solar cell, with a charge-transfer resistance as measured by electrochemical impedance spectroscopy that decreases with increasing film thickness. Moreover, the catalytic activity can be significantly enhanced by exposing the nanotubes to ozone in order to introduce defects. Ozone-treated, defective nanotube films could serve as catalytic, transparent, and conducting electrodes for the dye-sensitized solar cell. Other possible applications include batteries, fuel cells, and electroanalytical devices.  相似文献   

9.
Park S  Wang G  Cho B  Kim Y  Song S  Ji Y  Yoon MH  Lee T 《Nature nanotechnology》2012,7(7):438-442
Flexible materials and devices could be exploited in light-emitting diodes, electronic circuits, memory devices, sensors, displays, solar cells and bioelectronic devices. Nanoscale elements such as thin films, nanowires, nanotubes and nanoparticles can also be incorporated into the active films of mechanically flexible devices. Large-area devices containing extremely thin films of molecular materials represent the ultimate scaling of flexible devices based on organic materials, but the influence of bending and twisting on the electrical and mechanical stability of such devices has never been examined. Here, we report the fabrication and characterization of two-terminal electronic devices based on self-assembled monolayers of alkyl or aromatic thiol molecules on flexible substrates. We find that the charge transport characteristics of the devices remain stable under severe bending conditions (radius?≤?1?mm) and a large number of repetitive bending cycles (≥1,000). The devices also remain reliable in various bending configurations, including twisted and helical structures.  相似文献   

10.
Considerable progress in materials development and device integration for mechanically bendable and stretchable optoelectronics will broaden the application of “Internet‐of‐Things” concepts to a myriad of new applications. When addressing the needs associated with the human body, such as the detection of mechanical functions, monitoring of health parameters, and integration with human tissues, optoelectronic devices, interconnects/circuits enabling their functions, and the core passive components from which the whole system is built must sustain different degrees of mechanical stresses. Herein, the basic characteristics and performance of several of these devices are reported, particularly focusing on the conducting element constituting them. Among these devices, strain sensors of different types, energy storage elements, and power/energy storage and generators are included. Specifically, the advances during the past 3 years are reported, wherein mechanically flexible conducting elements are fabricated from (0D, 1D, and 2D) conducting nanomaterials from metals (e.g., Au nanoparticles, Ag flakes, Cu nanowires), carbon nanotubes/nanofibers, 2D conductors (e.g., graphene, MoS2), metal oxides (e.g., Zn nanorods), and conducting polymers (e.g., poly(3,4‐ethylenedioxythiophene):poly(4‐styrene sulfonate), polyaniline) in combination with passive fibrotic and elastomeric materials enabling, after integration, the so‐called electronic skins and electronic textiles.  相似文献   

11.
A method for the non-destructive purification of single-walled carbon nanotubes (SWNTs) using classical coordination chemistry to remove the metal catalyst has been developed. In preliminary tests, the conductivity of films based on the resulting SWNTs was markedly better than that of films prepared from SWNTs purified by treatment with oxidizing acid solutions. The transparent and conducting SWNT films have potential applications in optoelectronic devices.  相似文献   

12.
The development of omnidirectionally stretchable pressure sensors with high performance without stretching‐induced interference has been hampered by many challenges. Herein, an omnidirectionally stretchable piezoresistive pressure‐sensing device is demonstrated by combining an omniaxially stretchable substrate with a 3D micropattern array and solution‐printing of electrode and piezoresistive materials. A unique substrate structural design and materials mean that devices that are highly sensitive are rendered, with a stable out‐of‐plane pressure response to both static (sensitivity of 0.5 kPa?1 and limit of detection of 28 Pa) and dynamic pressures and the minimized in‐plane stretching responsiveness (a small strain gauge factor of 0.17), achieved through efficient strain absorption of the electrode and sensing materials. The device can detect human‐body tremors, as well as measure the relative elastic properties of human skin. The omnidirectionally stretchable pressure sensor with a high pressure sensitivity and minimal stretch‐responsiveness yields great potential to skin‐attachable wearable electronics, human–machine interfaces, and soft robotics applications.  相似文献   

13.
Transparent stretchable conductors as the core parts of the next-generation devices have attracted a great deal of attentions and achieved progress in a variety of practical applications. However, the current challenge is still to fabricate highly transparent stretchable conductors which can maintain stable resistance even under severe deformation. Here, we propose for the first time a facile, low-cost and scalable method for fabricating silver nanowires (AgNWs)–polyurethane acrylate (PUA)–polyvinyl alcohol (PVA)–silver nanowires (AgNWs) composite films with PVA and AgNWs coated on AgNWs–PUA films. The films were stretched and released after spraying water. After the sprayed water dried, we could observe the resistance could only increase by 21 % under tensile strain up to 20 %. In addition, the composite remains perfectly stable after 500 bending cycles. Our strategy is also suitable for the fabrication of other functional composites with high stretchability.  相似文献   

14.
Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet‐of‐Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24‐fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics.  相似文献   

15.
Stretchable electronics are attracting intensive attention due to their promising applications in many areas where electronic devices undergo large deformation and/or form intimate contact with curvilinear surfaces. On the other hand, a plethora of nanomaterials with outstanding properties have emerged over the past decades. The understanding of nanoscale phenomena, materials, and devices has progressed to a point where substantial strides in nanomaterial‐enabled applications become realistic. This review summarizes recent advances in one such application, nanomaterial‐enabled stretchable conductors (one of the most important components for stretchable electronics) and related stretchable devices (e.g., capacitive sensors, supercapacitors and electroactive polymer actuators), over the past five years. Focusing on bottom‐up synthesized carbon nanomaterials (e.g., carbon nanotubes and graphene) and metal nanomaterials (e.g., metal nanowires and nanoparticles), this review provides fundamental insights into the strategies for developing nanomaterial‐enabled highly conductive and stretchable conductors. Finally, some of the challenges and important directions in the area of nanomaterial‐enabled stretchable conductors and devices are discussed.  相似文献   

16.
For emerging biocompatible, wearable, and stretchable epidermal electronic devices, it is essential to realize novel stretchable conductors with the attributes of transparency, low-cost and nontoxic components, green-solvent processbility, self-healing, and thermal stabililty. Although conducting materials–rubber composites, ionic hydrogels, organogels have been developed, no stretchable material system that meets all the outlined requirements has been reported. Here, a series of P(SPMA-r-MMA) polymers with different ratios of ionic side chains is designed and synthesized, and it is demonstrated that the resulting stretchable ionic conductors with glycerol are transparent, water processable, self-healable, and thermally stable due to the chemically linked ionic side chain, satisfying all of the aforementioned requirements. Among the series of polymer gels, the P(SPMA0.75-r-MMA0.25) gel shows optimum conductivity (6.7 × 10−4 S cm−1), stretchability (2636% of break at elongation), and self-healing (98.3% in 3 h) properties. Accordingly, the transparent and self-healable P(SPMA0.75-r-MMA0.25) gels are used to realize thermally robust actuators up to 100 °C and deformable and self-healable thermal sensors.  相似文献   

17.
Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in‐plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out‐of‐plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D‐structured stretchable strain sensor is reported to monitor the out‐of‐plane force by employing 3D printing in conjunction with out‐of‐plane capillary force‐assisted self‐pinning of carbon nanotubes. The 3D‐structured sensor possesses large stretchability, multistrain detection, and strain‐direction recognition by one single sensor. It is demonstrated that out‐of‐plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next‐generation 3D stretchable sensors for electronic skin and soft robotics.  相似文献   

18.
Stretchable transparent conductors (STCs), generally consisting of conducting networks and stretchable transparent elastomers, can maintain stable conductivity and transparency even at large tensile strain, beyond the reach of rigid/flexible transparent conductors. They are essential components in stretchable/wearable electronics for using on irregular 3D conformable surfaces and have attracted tremendous attention in recent years. This review aims to provide systematical correlation of the conducting element–substrate interaction with the structural stability of conducting networks, as well as the properties and device applications of STCs. It starts with the micromechanics for stretching of conducting elements on substrates, including the mechanical mismatch, distribution/level of interfacial shear stress, and the deformation behavior of conducting elements on substrates. The macromechanics for stretching of conducting networks on substrates are then further illustrated from a more statistical point of view, namely sliding/preferred orientation of percolation networks, unfolding of buckled structures, and unit cell distortion/distributed rupture of nanomeshes. The structure‐dependent properties as well as the state‐of‐the‐art applications of STCs are summarized before ending with the conclusions and outlooks for STCs.  相似文献   

19.
This article reviews the use of electronic quality single-walled carbon nanotubes grown via chemical vapor deposition (CVD) approaches at high temperatures as building blocks for fabricating flexible field-effect devices, such as thin-film transistors (TFTs) and chemical sensors. Dry transfer printing technique is developed for forming films of CVD nanotubes on low-temperature plastic substrates. Examples of TFTs with the use of nanotubes and thin dielectrics and hydrogen sensors with the use of nanotubes decorated with palladium nanoparticles are discussed in detail to demonstrate the promising potentiality of single-walled carbon nanotubes for building high performance flexible devices, which can find applications where traditional devices on rigid substrates are not suitable.  相似文献   

20.
Ultrathin films of single‐walled carbon nanotubes (SWNTs) represent an attractive, emerging class of material, with properties that can approach the exceptional electrical, mechanical, and optical characteristics of individual SWNTs, in a format that, unlike isolated tubes, is readily suitable for scalable integration into devices. These features suggest the potential for realistic applications as conducting or semiconducting layers in diverse types of electronic, optoelectronic and sensor systems. This article reviews recent advances in assembly techniques for forming such films, modeling and experimental work that reveals their collective properties, and engineering aspects of implementation in sensors and in electronic devices and circuits with various levels of complexity. A concluding discussion provides some perspectives on possibilities for future work in fundamental and applied aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号