首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical behaviors of 2.5 V Li[Li1/3Ti5/3]O4 (LTO)/Li[Li0.1Al0.1Mn1.8]O4 (LAMO) cells for the first-generation 12 V lead-free battery were examined at −10, 25, and 55 °C. The LTO/LAMO cells showed the same rechargeable capacity in temperature ranging from −10 to 55 °C when the cells were examined at 0.5 mA cm−2 in cell potential ranging from 0 to 3.0 V. Capacity fading after 250 cycles was negligibly small at −10 °C. Rechargeable capacities, however, faded 5% at 25 °C and 15% at 55 °C after 250 cycles. In the discharged LTO/LAMO cell after 250 cycles at 55 °C, the state of charge (SOC) of the positive electrode was 16% while SOC of the negative electrode was 0%, indicated that the capacity fading was due to an imbalance in SOC between the positive and negative electrodes. To understand the progress of an imbalance in SOC, the LTO/LAMO cell with a lithium auxiliary electrode was fabricated and examined at 55 °C for 400 cycles, and the possible origin of capacity fading was discussed.  相似文献   

2.
《Ceramics International》2017,43(8):6554-6562
In order to improve the electrochemical performance of lithium titanium oxide, Li4Ti5O12 (LTO), for the use in the lithium-ion capacitors (LICs) application, LTO/graphene composites were synthesized through a solid state reaction. The composite exhibited an interwoven structure with LTO particles dispersed into graphene nanosheets network rather than an agglomerated state pristine LTO particles. It was found that there is an optimum percentage of graphene additives for the formation of pure LTO phase during the solid state synthesis of LTO/graphene composite. The effect of graphene nanosheets addition on electrochemical performance of LTO was investigated by a systemic characterization of galvanostatic cycling in lithium and lithium-ion cell configuration. The optimized composite exhibited a decreased polarization upon cycling and delivered a specific capacity of 173 mA h g−1 at 0.1 C and a well maintained capacity of 65 mA h g−1 even at 20 C. The energy density of 14 Wh kg−1 at a power density of 2700 W kg−1 was exhibited by a LIC full cell with a balanced mass ratio of anode to cathode along with a superior capacitance retention of 97% after 3000 cycles at a current density of 0.4 A g−1. This boost in reversible capacity, rate capability and cycling performance was attributed to a synergistic effect of graphene nanosheets, which provided a short lithium ion diffusion path as well as facile electron conduction channels.  相似文献   

3.
《Ceramics International》2020,46(17):26923-26935
In this study, spinel lithium titanate (Li4Ti5O12, LTO) anode materials were synthesized from two titanium sources (P25 TiO2, 100% anatase TiO2) using a spray-drying method and subsequent calcination at various temperatures. The electrochemical performance of both a Li/LTO half cell and a LiNi0.5Mn1.5O4/LTO (LNMO/LTO) full cell were investigated. The electrochemical performance of the LTO material prepared from P25 TiO2 was superior to that of the LTO prepared from 100% anatase TiO2. After modification of LTO material with AlPO4, the LTO coated with 2 wt% of AlPO4 (denoted “2%AlPO4-LTO”) provided the best performances. The specific (delithiation) capacities of the 2%AlPO4-LTO anode material was 189.7 mA h g−1 at 0.1C/0.1C, 184.5 mA h g−1 at 1C/1C, 178.8 mA h g−1 at 5C/5C, and 173.1 mA h g−1 at 10C/10C. From long-term cycling stability tests, the specific capacity at the first cycle and the capacity retention after cycling were 185.5 mA h g−1 and 98.06%, respectively, after 200 cycles at 1C/1C and 182.1 mA h g−1 and 99.18%, respectively, after 100 cycles at 1C/10C. For the LNMO/2%AlPO4-LTO full cell, the average specific capacity (delithiation) and coulombic efficiency after the first five cycles were 164.8 mA h g−1 and 93.30%, respectively, at 0.1C/0.1C. The specific capacities at higher C-rates were 156.1 mA h g−1 at 0.2C/0.2C, 135.7 mA h g−1 at 1C/1C, 97.5 mA h g−1 at 3C/3C, and 46.5 mA h g−1 at 5C/5C. After twenty-five cycles, the C-rate returned to 1C/1C and the specific capacity, coulombic efficiency, and capacity retention were maintained at 134.1 mA h g−1, 99.17%, and 98.82%, respectively.  相似文献   

4.
Spinel crystalline lithium titanium oxide (Li4Ti5O12 or LTO) has gained attention as a possible alternative material to graphite for use as anodes in lithium-ion rechargeable batteries due to its low volume expansion and dendrite-free long-term stability. However, the rate capability of LTO is limited by its low electronic conductivity, which results in a large polarization resistance between electrodes. In this study, we demonstrate a spray-drying-assisted carbon coating approach to synthesize LTO/C composites for enhanced lithium-insertion capacity and facilitated charge-discharge reaction kinetics. The thin carbon layer of LTO/C composite contributes to suppressing particle growth by forming passivating carbon layers. In addition to the decrease in particle size for short lithium-diffusion pathways, the highly conductive carbon layers reduce the interfacial resistance between the electrode and electrolyte by enhanced electrical conductivity. The electrochemical performances of the spray-drying-prepared LTO/C composite such as the specific capacity, cycle and rate capabilities, and impedance are compared with pristine LTO and carbon-coated LTO synthesized without spray-drying. The LTO/C prepared from glucose exhibits a 11.15% enhancement in rate characteristics of pristine LTO at 0.5 C after 100 cycles. These results indicate that the carbon coating layer promotes charge transfer and ion diffusion as well as provides a buffering effect for improved rate and cyclic capabilities.  相似文献   

5.
《Ceramics International》2017,43(2):1650-1656
To improve the electrochemical and anti flatulence performance of Li4Ti5O12, Ag modified Li4Ti5O12 (LTO) with high electrochemical performance as anode materials for lithium-ion battery was synthesized successfully by two-step solid phase sintering and subsequent electroless plating process in the presence of silver. The effect of Ag modification on the physical and electrochemical properties were investigated by the extensive material characterization of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM). The results showed that the samples possessed single spinel structure, it could be observed that the LTO/Ag composite and the pure LTO shared the same vibration frequencies, which indicated that the crystal structure of LTO didn’t change after electroless plating process, and the particles were uniformly and regularly shaped within 0.5–1.0 µm. Electrochemical performance of the samples were evaluated by the charging and discharging, cyclic voltammetry, electrochemical impedance spectroscopy, cycling and rate tests. It's obvious that the LTO/Ag composite prepared at the 10 min of electroless plating showed the highest performance with capacitance of 182.3 mA h/g at 0.2 C current rates. What's more, the LTO/Ag composites still maintained 92% of its initial capacity even after 50 charge/discharge cycles. Modification of appropriate Ag not only benefits the reversible intercalation and deintercalation of Li+, but also improves the diffusion coefficient of lithium ion. Besides, modification of appropriate Ag lower electrochemical polarization leads to higher conductivity and cycle performance of LTO, which is consistent with the results of the best reversible capacities.  相似文献   

6.
《Ceramics International》2016,42(14):15464-15470
The TiN coated Li4Ti5O12 (LTO) submicrospheres with high electrochemical performance as anode materials for lithium-ion battery were synthesized successfully by solvothermal method and subsequent nitridation process in the presence of ammonia. The XRD results revealed that the crystal structure of LTO did not change after thermal nitridation process. The submicrospheres morphology of LTO and TiN film on the surface of LTO submicrospheres were characterized by FESEM and HRTEM, respectively. XPS result confirmed that a small amount of Ti changed from Ti4+ to Ti3+ after nitridation process, which will increase the electronic conductivity of LTO. Electrochemical results showed that electrochemical performance of TiN coated LTO anode materials compared favorably with that of pure LTO. Also its rate capability and cycling performance were apparently superior to those of pure LTO. The reversible capacity of TiN-LTO is 105.2 mA h g−1 at a current density of 10 C after 100 cycles and maintain 92.9% of its initial discharge capacity, while that of pure LTO is only 83.6 mA h g−1 with a capacity retention of 90.3%. Even at 20 C, the discharge capacity of TiN coated LTO sample is 101.3 mA h g−1, compared with 77.3 mA h g−1 for pristine LTO in the potential range 1.0–2.5 V (vs. Li/Li+).  相似文献   

7.
X. Fang  N. Ding  X.Y. Feng  Y. Lu  C.H. Chen   《Electrochimica acta》2009,54(28):7471-7475
LiNi0.5Mn1.5O4 powders are prepared via a new co-precipitation method. In this method, chloride salts are used as precursors and ammonia as a precipitator. The impurity of chlorine can be removed via a thermal decomposition of NH4Cl in the subsequent calcination. X-ray diffraction pattern reveals that the final product is a pure spinel phase of LiNi0.5Mn1.5O4. Scanning electron microscopy shows that the powders have an octahedron shape with a particle size of about 2 μm. Electrochemical test shows that the LiNi0.5Mn1.5O4 powders exhibit an excellent cycling performance and after 300 cycles, the capacity retention is 83%. The lithium diffusion coefficient is measured to be 5.94 × 10−11 cm2 s−1 at 4.1 V, 4.35 × 10−10 cm2 s−1 at 4.75 V and 7.0 × 10−10 cm2 s−1 at 4.86 V. The mechanism of capacity loss is also explored. After 300 cycles, the cell parameter ‘a’ decreases by 0.54% for the quenched sample (LiNi0.5Mn1.5O4−δ) and by 0.42% for the annealed sample (LiNi0.5Mn1.5O4). Besides, it is the first time to identify experimentally that the Ni and Mn ions dissolved in the electrolyte can be further deposited on the surface of anode.  相似文献   

8.
The cathode material is synthesized from FeC2O4·2H2O and LiH2PO4 by a solid-state reaction using citric acid as a carbon source. The electric conductivity of the synthesized LiFePO4 has been raised by eight orders of magnitude from 10−9 S cm−1. The LiFePO4/C composite shows a greatly enhanced rate performance and the cyclic stability at room temperature. It delivers an initial discharge capacity of 128 mAh g−1 at 4C, which is retained as high as 92% after 1000 cycles. In addition, the tested low temperature character is attractive. At −20 °C, the composite exhibits a discharge capacity of 110 mAh g−1 at 0.1C. The homogenous morphology, the porous surface, the small particles inside and the conductive carbon observed contribute much to obtain the favorable electrochemical performance.  相似文献   

9.
Li4Ti4.9V0.1O12 nanometric powders were synthesized via a facile solid-state reaction method under inert atmosphere. XRD analyses demonstrated that the V-ions successfully entered the structure of cubic spinel-type Li4Ti5O12 (LTO), reduced the lattice parameter and no impurities appeared. Compared with the pristine LTO, the electronic conductivity of Li4Ti4.9V0.1O12 powders is as high as 2.9 × 10−1 S cm−1, which should be attributed to the transformation of some Ti3+ from Ti4+ induced by the efficient V-ions doping and the deficient oxygen condition. Meanwhile, the results of XPS and EDS further proved the coexistence of V5+ and Ti3+ ions. This mixed Ti4+/Ti3+ ions can remarkably improve its cycle stability at high discharge–charge rates because of the enhancement of the electronic conductivity. The images of SEM showed that Li4Ti4.9V0.1O12 powders have smaller particles and narrower particle size distribution under 330 nm. And EIS indicates that Li4Ti4.9V0.1O12 has a faster lithium-ion diffusivity than LTO. Between 1.0 and 2.5 V, the electrochemical performance, especially at high rates, is excellent. The discharge capacities are as high as 166 mAh g−1 at 0.5C and 117.3 mAh g−1 at 5C. At the rate of 2C, it exhibits a long-term cyclability, retaining over 97.9% of its initial discharge capacity beyond 1713 cycles. These outstanding electrochemical performances should be ascribed to its nanometric particle size and high conductivity (both electron and lithium ion). Therefore, the as-prepared material is promising for such extensive applications as plug-in hybrid electric vehicles and electric vehicles.  相似文献   

10.
《Ceramics International》2022,48(14):20237-20244
Composite anode materials with a unique architecture of carbon nanotubes (CNTs)-chained spinel lithium titanate (Li4Ti5O12, LTO) nanoparticles are prepared for lithium ion capacitors (LICs). The CNTs networks derived from commercial conductive slurry not only bring out a steric hindrance effect to restrict the growth of Li4Ti5O12 particles but greatly enhance the electronic conductivity of the CNTs/LTO composites, both have contributed to the excellent rate capability and cycle stability. The capacity retention at 30 C (1 C = 175 mA g?1) is as high as 89.7% of that at 0.2 C with a CNTs content of 11 wt%. Meanwhile, there is not any capacity degradation after 500 cycles at 5 C. The LIC assembled with activated carbon (AC) cathode and such a CNTs/LTO composite anode displays excellent energy storage properties, including a high energy density of 35 Wh kg?1 at 7434 W kg?1, and a high capacity retention of 87.8% after 2200 cycles at 1 A g?1. These electrochemical performances outperform the reported data achieved on other LTO anode-based LICs. Considering the facile and scalable preparation process proposed herein, the CNTs/LTO composites can be very potential anode materials for hybrid capacitors towards high power-energy outputs.  相似文献   

11.
《Ceramics International》2020,46(13):20878-20884
Novel structured porous hollow six-branched star-like MnO was synthesized via a facile, surfactant-free hydrothermal decomposition, which was followed by high-temperature heat treatment. Compared with the nonporous hollow six-branched star-like MnO2, the porous hollow six-branched star-like MnO realized substantially higher electrochemical performance (844.8 mAh g−1 at 0.5 A g−1 after 200 cycles and 769.7, 741.7, 728.9, 713.2, and 704.4 mAh g−1 at 0.1, 0.3, 0.5, 1, and 1.5 A g−1, respectively, for porous star-like MnO, compared with 338.4 mAh g−1 and 476.7, 392.4, 357, 303.4, and 269.9, respectively, under the same testing conditions for nonporous star-like MnO2). The superior performance of the porous hollow six-branched star-like MnO is attributed to its enhanced electrode kinetics, which are due to an enlarged active contact area and shortened electron and Li+ conduction paths.  相似文献   

12.
Monoclinic lithium vanadium phosphate/carbon (Li3V2(PO4)3/C) cathode has been synthesized for applications in lithium ion batteries, via a rheological phase reaction (RPR) method. The sample is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). This material exhibits high initial discharge capacity of 189 and 177 mAh g−1 at 0.1 and 0.2 C between 3.0 and 4.8 V, respectively. Moreover, it displays good fast rate performance, which discharge capacities of 140, 133, 129 and 124 mAh g−1 can be delivered after 100 cycles between 3.0 and 4.8 V vs. Li at a different rate of 0.5, 1, 2 and 5 C, respectively. The electrochemical impedance spectroscopy (EIS) is also investigated.  相似文献   

13.
A series of LiMn0.9Fe0.1−xMgxPO4/C (x = 0, 0.01, 0.02, 0.05) was synthesized by a solid state reaction, and the effect of synthesis temperature and Fe/Mg ratio on the electrochemical performance of the obtained materials was investigated by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and electrochemical measurements. The electrochemical performance of the Fe and Mg co-substituted LiMnPO4 was obviously improved with increasing synthesis temperature from 650 to 800 °C, but further increase led to an abrupt capacity loss due to the impurity formation. The Fe and Mg co-substitution could remarkably enhance the electrochemical activity of LiMnPO4 compared with the Fe substitution only, but too high level of Mg doping would worsen the rate capability. The LiMn0.9Fe0.09Mg0.01PO4/C synthesized at 800 °C demonstrated the optimum electrochemical performance with a high capacity and an excellent rate capability. Even discharged at the rate of 10 C, a capacity of 60 mAh g−1 was still observed.  相似文献   

14.
《Ceramics International》2017,43(13):9945-9950
Co3O4, as a promising anode material for the next generation lithium ion batteries to replace graphite, displays high theoretical capacity (890 mAh g−1) and excellent electrochemical properties. However, the drawbacks of its poor cycle performance caused by large volume changes during charge-discharge process and low initial coulombic efficiency due to large irreversible reaction impede its practical application. Herein, we have developed a porous hollow Co3O4 microfiber with 500 nm diameter and 60 nm wall thickness synthesized via a facile chemical precipitation method with subsequent thermal decomposition. As an advanced anode for lithium ion batteries, the porous hollow Co3O4 microfibers deliver an obviously enhanced electrochemical property in terms of lithium storage capacity (1177.4 mA h g−1 at 100 mA g−1), initial coulombic efficiency (82.9%) and cycle performance (76.6% capacity retention at 200th cycle). This enhancement could be attributed to the well-designed microstructure of porous hollow Co3O4 microfibers, which could increase the contact surface area between electrolyte and active materials and accommodate the volume variations via additional void space during cycling.  相似文献   

15.
X.H. Rui 《Electrochimica acta》2009,54(12):3374-3380
The carbon-coated monoclinic Li3V2(PO4)3 (LVP) cathode materials were synthesized by a solid-state reaction process under the same conditions using citric acid, glucose, PVDF and starch, respectively, as both reduction agents and carbon coating sources. The carbon coating can enhance the conductivity of the composite materials and hinder the growth of Li3V2(PO4)3 particles. Their structures and physicochemical properties were investigated using X-ray diffraction (XRD), thermogravimetric (TG), scanning electron microscopy (SEM) and electrochemical methods. In the voltage region of 3.0-4.3 V, the electrochemical cycling of these LVP/C electrodes all presents good rate capability and excellent cycle stability. It is found that the citric acid-derived LVP owns the largest reversible capacity of 118 mAh g−1 with no capacity fading during 100 cycles at the rate of 0.2C, and the PVDF-derived LVP possesses a capacity of 95 mAh g−1 even at the rate of 5C. While in the voltage region of 3.0-4.8 V, all samples exhibit a slightly poorer cycle performance with the capacity retention of about 86% after 50 cycles at the rate of 0.2C. The reasons for electrochemical performance of the carbon coated Li3V2(PO4)3 composites are also discussed. The solid-state reaction is feasible for the preparation of the carbon coated Li3V2(PO4)3 composites which can offer favorable properties for commercial applications.  相似文献   

16.
A flexible, free-standing composite anode with Li4Ti5O12 nanosheet arrays anchoring on plain-weaved carbon fiber cloth (LTO@CC) is prepared by a hydrothermal and post-annealing process assisted by a TiO2 seed layer. The LTO@CC anode free from polymeric binder and conducting agent exhibited much higher lithium storage capacity and cycling stability than the conventional slurry-processed electrode using the dandelion-like Li4Ti5O12 microspheres prepared by the same hydrothermal process. A high specific capacity of 128.8 mA h g?1 was obtained at a current rate of 30 C (1 C = 175 mA g?1), and almost negligible capacity loses was observed when the cell was cycled at 10, 20 and 30 C each for 100 cycles. The carbon fiber matrix contributed to Li storage at low current rate, but the LTO nanosheet arrays have played the dominant role on the excellent rate capability. The improved electrochemical performance can be attributed to the synergetic effect between the hierarchical Li4Ti5O12 nanosheet arrays and the carbon fiber matrix, which integrated short Li+ diffusion length, three-dimensional conductive architecture and well preserved structural integrity during the high rate and repeated charge-discharge measurements.  相似文献   

17.
X.H. Rui  J. Liu  C.H. Chen 《Electrochimica acta》2010,55(22):6761-6767
The carbon coated monoclinic Li3V2(PO4)3 (LVP/C) cathode materials are synthesized via a sol-gel method using oxalic acid as a chelating reagent and maltose as a carbon source. The effect of carbon content on the synthesis of LVP/C composites is investigated using X-ray diffraction, scanning electron microscopy, galvanostatic charge/discharge and DC resistance measurements. The results show that, among the LVP/C powders with different carbon content (5.7, 9.6, 11.6 and 15.3 wt.%), the sample with 11.6 wt.% carbon content gives rise to the corresponding (LVP/C) ∥Li half cell with a low DC resistance and superior electrochemical performance, especially with excellent rate capability. Its discharge capacity decreases by only 7.2% from 125 mAh g−1 at 0.5 C to 116 mAh g−1 at 5 C between 3.0 and 4.3 V. The maltose-based sol-gel method is feasible for the preparation of LVP/C composites for high power lithium ion batteries.  相似文献   

18.
We report here a polymer-templated hydrothermal growth method and subsequent calcination to achieve carbon coated hollow CuFe2O4 spheres (H–CuFe2O4@C). This material, when used as anode for Li-ion battery, retains a high specific capacity of 550 mAh g−1 even after the 70th cycle, which is much higher than those of both CuFe2O4@C (∼300 mAh g−1) and H–CuFe2O4 (∼120 mAh g−1). And galvanostatic cycling at different current densities reveals that a capacity of 480 mAh g−1, 91% recovery of the specific capacity cycling at 100 mA g−1, can be obtained even after 50 cycles running from 100 to 1600 mA g−1. The significantly enhanced electrochemical performances of H–CuFe2O4@C with regard to Li-ion storage are ascribed to the following factors: (1) the hollow void, which could mitigate the pulverization of electrode and facilitate the lithium-ion, electron and electrolyte transport; (2) the conductive carbon coating, which could enhance the conductivity, alleviate the agglomeration problem, prevent the formation of an overly thick SEI film and buffer the electrode. Such a structural motif of H–CuFe2O4@C is promising, for electrode materials of LIBs, and points out a general strategy for creating other hollow-shell electrode materials with improved electrochemical performances.  相似文献   

19.
Conductive carbon has been coated on the surface of LiNi0.5Mn1.5O4 cathode material by the carbonization of sucrose for the purpose of improving the rate performance. The effect of carbon coating on the physical and electrochemical properties is discussed through the characterizations of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), cycling and rate tests. Results demonstrate that the carbon coating can greatly enhance the discharge capacity, rate capability and cycling stability of the LiNi0.5Mn1.5O4 without degrading the spinel structure. The sample modified with 1 wt.% sucrose displays the best performance. A large capacity of 130 mAh g−1 at 1 C discharge rate with a high retention of 92% after 100 cycles and a stable 114 mAh g−1 at 5 C discharge rate can be delivered. The remarkably improved rate properties of the carbon-coated samples are due to the suppression of the solid electrolyte interfacial (SEI) layer development and faster kinetics of both the Li+ diffusion and the charge transfer reaction.  相似文献   

20.
《Ceramics International》2015,41(8):9655-9661
The hollow core–shell ZnMn2O4 microspheres are successfully prepared by a solvothermal carbon templating method and then a annealing process. The crystal phase and particle morphology of resultant ZnMn2O4 microspheres are characterized by XRD and TEM. The electrochemical properties of the ZnMn2O4 microspheres as an anode material are investigated for lithium ion batteries. The results show that the ZnMn2O4 microspheres exhibit a reversible capacity of 855.8 mA h g−1 at a current density of 200 mA g−1 after 50 cycles. Even at 1000 mA g−1, the reversible capacity of the ZnMn2O4 microspheres is still kept at 724.4 mA h g−1 after 60 cycles. The enhanced electrochemical performance suggests the promising potential of the hollow core–shell ZnMn2O4 microspheres in lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号