共查询到17条相似文献,搜索用时 77 毫秒
1.
指出常规ARTI型神经网络的不足,提出了一种改进的相似度计算方法。它同时考虑两向量对应位子值,避免了ARTI网络中两个向量由于输入顺序的不同而得到不同的相似度的结果;针对ARTI网络模式识别的漂移问题,提出了少数服从多数原则来减少这种问题的出现。改进了ARTI型神经网络的应用效果。 相似文献
2.
3.
基于ART2神经网络算法改进的研究 总被引:1,自引:0,他引:1
ART2神经网络是按照自适应谐振理论建立的一种自组织、无监督的人工神经网络.通过分析经典自适应谐振神经网络聚类过程,针对传统ART2神经网络模型对分类的不确定性和网络权值模式漂移等不足,提出了基于算法改进的ART2神经网络模型.最后对改进的ART2神经网络进行了仿真,并与经典神经网络所做仿真的结果比较,验证了改进的ART2神经网络结构大大提高了分类的正确率,有效改善了模式漂移现象.降低了空间存储消耗. 相似文献
4.
5.
本文提出了一种基于域理论的自适应谐振神经网络算法FTART2,算法将自适应谐振理论和域理论的优点有要结合,不需人为设置隐层神经元,学习速度快,精度高。此外,本文不提出了一种从FTART2网络中抽取符号规则的方法。实验结果表明,使用该方法抽取出的符号规则可理解性好,预测精度高,可以很好地描述了FTART2网络的性能。 相似文献
6.
自适应共振(ART)神经网络具有无监督学习功能,能对时序信号进行实时学习、实时处理,能对已学习过的样本作出快速响应,自动识别等优点,尤其以ART2网络更具有实用性。但是传统的ART2网络存在幅度信息丢失和模式漂移等现象,针对这一情况,本文把模式漂移的方向作为一个因素进行考虑,通过设置漂移上限系数,引入栈结构对模式漂移的相反方向相互抵消,同一方向累加的方法有效限制了模式的飘移,对各改进算法进行比较体现本文算法的优越性。 相似文献
7.
传统的ART2神经网络由于预处理阶段的归一化,易将重要但幅值较小的分量作为噪声清除,造成在分类中丢失重要信息,同时还存在模式漂移的不足,分析产生这些不足的原因,并基于去单位化以及类内样本与类中心的距离不同而对类中心偏移产生不同影响的思想,对传统的ART2神经网络算法进行了改进。对一组渐变数据的测试表明,改进后的网络有效改善了模式漂移现象。同时,改进的ART2神经网络在核辐射场数据处理分类中有一定的实用价值。 相似文献
8.
对模糊ART神经网络模型中的类别选择方法进行改进,并在权值向量的修改规则中引入隶属度,得到一种改进的Fuzzy ART学习算法。IRIS数据分类结果证明了新方法的可行性。 相似文献
9.
自适应共振理论能够动态地对输入向量进行聚类,概率神经网络使用联合概率密度分布进行分类估计.给出将两者结合使用的算法,并应用到入侵检测中.测试表明,概率神经网络的函数逼近能力和网络性能得到提高,入侵检测系统的漏报率和误报率明显下降. 相似文献
10.
马吉胜 《模式识别与人工智能》2000,13(2)
指出了传统的ART2神经网络对渐变过程不敏感的局限性,建立了新的ART2神经网络模型,与传统模型相比,增加了伴随神经元和重置系统B.开发了相应的MATLAB程序,模拟实验表明新的ART2神经网络能够分辨渐变过程. 相似文献
11.
传统A RT 2神经网络在聚类过程中模式的匹配度量仅仅与模式的相位信息相关,这种匹配度量忽略了模式的幅度信息的作用,在对相位信息相同而幅度信息不同的两个簇进行聚类时,效果很差;同时,它还存在输入域限制的问题。针对这些不足之处,提出了一种改进的A RT 2神经网络,在输入模式进入网络学习过程中,保存其幅值信息,放宽对负实数的非线性转换,并考虑输入模式到各个簇的中心点的最短距离,同时增加一个阈值对离群点进行判定,消除了离群点对聚类结果的影响。实验验证,改进的A RT 2网络在对相同相位的两个簇聚类时,性能明显优于传统的A RT 2网络。 相似文献
12.
ART2(自适应谐振理论2)算法是神经网络中一种可以对模拟输入信号或二值信号进行无监督聚类的算法,所以ART2算法能够降低数据挖掘中原始数据的预处理的复杂度,提高挖掘效率。针对ART2算法中出现的聚类中心偏移的缺点,采用ART2算法与K-均值算法相结合的方法来抑制ART2中聚类中心偏移的现象。通过仿真对该方法进行了验证。 相似文献
13.
ART Ⅱ网络以模式的相似性量度值为基础,能够对动态的输入模式样本进行自适应的聚类和识别,然而标准的ART Ⅱ网络在输入数据处理过程中,忽略了样本数据中的负数信息和幅值信息,造成信号畸变和"同相位不可分"问题,在权值调整过程中,聚类中心发生移动,容易造成"模式漂移"现象。针对上述问题结合相关文献提出了引入非线性函数对输入数据进行变换的方法解决"同相位不可分"问题,用待测数据与同一模式类中有限数据的欧氏距离与限定值进行比较实现聚类判定,抑制"模式漂移"现象。用Matlab仿真表明,改进算法性能优于标准算法。 相似文献
14.
15.
针对传统ART2型神经网络的缺点,提出了一种增强了网络执行速度的改进的ART2型神经网络。改进后的算法避免了传统ART2因输入次序不同而导致的输出结果不同的缺陷。应用了一种新的方法计算输入模式与所有模式的相似度。为了解决传统ART2型神经网络的模式漂移问题引入了激活深度的概念。改善了ATR2型神经网络的适用性。 相似文献
16.
基于幅值分量的ART2神经网络的改进 总被引:1,自引:1,他引:1
摘要: ART2神经网络由于其算法结构中固有的归一化环节,丢失了幅度信息,其相似量度是一种模式相位信息的量度,存在“同相位不可分”的缺点。文章针对此不足,将样本的幅度作为样本特征分量的办法,对传统的ART2网络进行了改进。实验证明,改进后ART2网络在处理集群分布样本时,性能优于传统ART2网络,同时,改进的ART2网络在核辐射场数据处理分类中有一定的实用价值 相似文献
17.
ART2网络是一种著名的聚类方法,已实际应用于诸多领域,其作用于二维空间数据,不仅存在模式漂移和向量幅度信息缺失的问题,而且难以适应不规则形态分布的空间数据的聚类。提出了一种树ART2网络模型(TART2),通过长期记忆(LTM)模式的调整和向量幅度信息的学习,使ART2网络保持了带空间距离约束的旧模式记忆;引入树结构优化,降低了警戒参数设置的主观要求,减少了模式交混现象的发生。对比实验结果表明,TART2网络更适用于带状分布的空间数据聚类,具有较高的可塑性和自适应性。 相似文献