首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The influence of alkylpyridines additive to an I/I3 redox electrolyte in acetonitrile on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) dye-sensitized TiO2 solar cell was studied. IV measurements were performed using more than 30 different alkylpyridines. The alkylpyridine additives showed a significant influence on the performance of the cell. All the additives decreased the short-circuit photocurrent (Jsc), but most of the alkylpyridines increased the open-circuit photovoltage (Voc) and fill factor (ff) of the solar cell. The results of the molecular orbital calculations suggest that the dipole moment of the alkylpyridine molecules correlate with the Jsc of the cell. These results also suggest that both the size and ionization energy of pyridines correlate with the Voc of the cell. Under AM 1.5 (100 mW/cm2), the highest solar energy conversion efficiency (η) of 7.6% was achieved by using 2-propylpyridine as an additive, which was more effective than the previously reported additive, 4-t-butylpyridine.  相似文献   

2.
The influence of alkylaminopyridine additives on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) dye-sensitized TiO2 solar cell with an I/I3 redox electrolyte in acetonitrile was studied. The current–voltage characteristics were measured for more than 20 different alkylaminopyridines under AM 1.5 (100 mW/cm2). The alkylaminopyridine additives tested had varying effects on the performance of the cell. All the additives decreased the short circuit photocurrent density (Jsc), but increased the open-circuit photovoltage (Voc) of the solar cell. Molecular orbital calculations imply that the dipole moment of the alkylaminopyridine molecules influences the Jsc of the cell and that the size, solvent accessible surface area, and ionization energy all affect the Voc of the cell. The highest Voc of 0.88 V was observed in an electrolyte containing 4-pyrrolidinopyridine, which is comparable to the maximum Voc of 0.9 V for a cell consisting of TiO2 electrode and I/I3 redox system.  相似文献   

3.
The influence of aminothiazole additives in acetonitrile solution of an I/I3 redox electrolyte on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′- bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) (N719) dye-sensitized TiO2 solar cell was studied. The current–voltage characteristics were investigated under AM 1.5 (100 mW/cm2) for nine different aminothiazole compounds. The aminothiazole additives tested had varying influences on the solar cell performance. Most of the additives enhanced the open-circuit photovoltage (Voc), but reduced the short circuit photocurrent density (Jsc) of the solar cell. Both the physical and chemical properties of the aminothiazoles were computationally calculated in order to determine the reasons that the additive influenced solar cell performance. The larger the calculated partial charge of the nitrogen atom in the thiazole, the higher the Voc value. The Voc value increased as the dipole moment of aminothiazoles in acetonitrile increased. Moreover, the Voc of the solar cell also increased as the size of the aminothiazole molecules decreased. These results suggest that the electron donicity of the aminothiazole additives influenced the interaction with the TiO2 photoelectrode, which altered the dye-sensitized solar cell performance.  相似文献   

4.
The influence of pyrazole additives in an I/I3 redox electrolyte solution on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) (N719) dye-sensitized TiO2 solar cell was studied. The current–voltage characteristics of the cell were measured using 18 different pyrazole derivatives. All of the pyrazole additives enhanced the open-circuit photovoltage (Voc) and the solar energy conversion efficiency (η), but reduced the short-circuit photocurrent density (Jsc). Most of the pyrazoles improved fill factor (ff). The physical and chemical properties of the pyrazoles were computationally calculated in order to elucidate the reasons for the additive effects on cell performance. The greater the partial charge of the nitrogen atom at position 2 in the pyrazole group, the larger the Voc, but the smaller the Jsc values. As the dipole moment of the pyrazole derivatives increased, the Voc value increased, but the Jsc value decreased. The Voc of the cell also increased as the ionization energy of the pyrazoles decreased. These results suggest that the electron donicity of the pyrazole additives affected the interaction with the nanocrystalline TiO2 photoelectrode, the I/I3 electrolyte, and the acetonitrile solvent, which changed the Ru(II)-dye-sensitized solar cell performance.  相似文献   

5.
The effect of the iodide/triiodide redox electrolyte in various organic solvents on the photoelectrochemical properties of bis(tetrabutylammonium) cis-bis(thiocyanato)bis(4-carboxy-2,2′-bipyridine-4′-carboxylato)ruthenium(II)-sensitized nanocrystalline TiO2 solar cells was studied. Solvents with large donor numbers dramatically enhanced the open-circuit voltage (Voc), but usually reduced the short-circuit photocurrent density (Jsc). For a mixed solvent of tetrahydrofuran (THF) and acetonitrile, Voc increased and the fill factor decreased with increasing THF concentration, but Jsc remained relatively constant. As the partial charge of the N or O atom of the solvent molecule increased, Voc increased, but Jsc was unchanged up to a certain value of the partial charge (for THF, −0.46). For cells using 0.3 M 4-tert-butylpyridine and 20 vol% THF in the electrolyte, a short-circuit photocurrent density of 18.23 mA cm−2, an open-circuit voltage of 0.73 V, a fill factor of 0.73, and an overall conversion efficiency of 9.74% were obtained.  相似文献   

6.
Quasi-dye-sensitized solar cells were prepared by using ionic liquid-type electrolytes and gelators consisting of polyvinylpyridine and alkyl dihalides. Gelation occurred by the reaction of polyvinylpyridine and alkyl dihalides. When the chain length of the dihalides was varied, the short-circuit current (Jsc) increased with an increase in the chain length. However, the open-circuit voltage (Voc) and fill factor (ff) slightly decreased. The increase in Jsc was brought about by the decrease in the interfacial resistances between the gel electrolyte and the counter electrode. In addition, the increase in the Jsc was explained by increases in the apparent diffusion coefficient of I/I3 when the chain length increased. Decreases in Voc and ff were explained by back-electron transfers from TiO2 to iodine in the electrolytes. Voc of the cells solidified by alkyldiiodide was lower than that solidified by alkyldichloride or alkyldibromide. It was explained by negatively shifted redox potential of I/I3, compared with those for Cl/Cl2 or Br/Br2.  相似文献   

7.
Dye-sensitized solar cells based on nanoporous oxide semiconductor thin films such as TiO2, Nb2O5, ZnO, SnO2, and In2O3 with mercurochrome as the sensitizer were investigated. Photovoltaic performance of the solar cell depended remarkably on the semiconductor materials. Mercurochrome can convert visible light in the range of 400–600 nm to electrons. A high incident photon-to-current efficiency (IPCE), 69%, was obtained at 510 nm for a mercurochrome-sensitized ZnO solar cell with an I/I3 redox electrolyte. The solar energy conversion efficiency under AM1.5 (99 mW cm−2) reached 2.5% with a short-circuit photocurrent density (Jsc) of 7.44 mA cm−2, a open-circuit photovoltage (Voc) of 0.52 V, and a fill factor (ff) of 0.64. The Jsc for the cell increased with increasing thickness of semiconductor thin films due to increasing amount of dye, while the Voc decreased due to increasing of loss of injected electrons due to recombination and the rate constant for reverse reaction. Dependence of photovoltaic performance of mercurochrome-sensitized solar cells on semiconductor particles, light intensity, and irradiation time were also investigated. High performance of mercurochrome-sensitized ZnO solar cells indicate that the combination of dye and semiconductor is very important for highly efficient dye-sensitized solar cells and mercurochrome is one of the best sensitizers for nanoporous ZnO photoelectrode. In addition, a possibility of organic dye-sensitized oxide semiconductor solar cells has been proposed as well as one using metal complexes.  相似文献   

8.
This paper reports the high-energy proton irradiation effects on GaAs/Ge space solar cells. The solar cells were irradiated by protons with energy of 5–20 MeV at a fluence ranging from 1×109 to 7×1013 cm−2, and then their electric parameters were measured at AM0. It was shown that the Isc, Voc and Pmax degrade as the fluence increases, respectively, but the degradation rates of Isc, Voc and Pmax decrease as the proton energy increases, and the degradation is relative to proton irradiation-induced defect Ec−0.41 eV in irradiated GaAs/Ge cells.  相似文献   

9.
A polymer gel electrolyte composed of a poly(ethylene oxide) derivative, poly(ethylene oxide-co-2-(2-methoxyethoxy) ethyl glycidyl ether), mixed with gamma-butyrolactone (GBL), LiI and I2 is employed in dye sensitized solar cells (DSSC). The electrolyte is characterized by conductivity experiments, Raman spectroscopy and thermal analysis. The influence of the electrolyte composition on the kinetics of DSSC is also investigated by transient absorption spectroscopy (TAS). The electrolyte containing 70 wt.% of GBL and 20 wt.% of LiI presents the highest conductivity (1.9 × 10−3 S cm−1). An efficiency of 4.4% is achieved using this composition. The increase in ISC as a function of GBL can be attributed an increase in the mobility of the iodide (polyiodide) species. The increase in the yield of the intermediate species, I2, originating in the regeneration reaction, is confirmed by TAS. However, the charge recombination process is faster at this composition and a decrease in the Voc is observed. Photovoltage decay experiments confirm an acceleration in charge recombination for the DSSC assembled with the electrolyte containing more GBL. Raman investigations show that in this electrolyte the I5/I3 ratio is higher. Theoretical calculations also indicate that the I5 species is a better electron acceptor.  相似文献   

10.
The efficiency of dye sensitized solar cell depends on the number of factors such as impedance due to anions in the electrolytes, oxidation–reduction process of anions and size of cations of the electrolyte. This paper reports the effect of electrolytes on the photovoltaic performance of hybrid dye sensitized ZnO solar cells based on Eosin Y dye. The size of the cations has been varied by choosing different electrolytes such as LiBr+Br2, LiI+I2, tetrapropylammonium iodide +I2 in mixed solvent of acetronitrile and ethylene carbonate. The impedance of anions has been determined by electrochemical impedance spectra. It is observed that Br/Br3 offers high impedance as compared to I/I3 couple. The oxidation–reduction reactions of electrolytes are measured by linear sweep voltammogram. It is found that Br/Br3 is more suitable than an I/I3 couple in dye sensitized solar cell (DSSC) in terms of higher open-circuit photovoltage production and higher overall energy conversion efficiency. This is attributed to more positive potential of the dye sensitizer than that of Br/Br3. The gain in Voc was due to the enlarged energy level difference between the redox potential of the electrolyte and the Fermi level (Ef) of ZnO and the suppressed charge recombination as well.  相似文献   

11.
In this paper, the photovoltaic feature of metal-boron carbide-silicon (MCS) solar cell was reported. The boron-doped diamond-like carbon thin film on n-silicon substrate has been prepared using arc-discharge plasma chemical vapor deposition (PCVD) technique. The conductivity and the resistivity of the film were measured by Bio-Rad Hall5500PC system to be p-type semiconductor and 3–12 Ω cm/□, respectively. The boron content in the films was about 0.8–1.2%, obtained from Auger electron spectroscopy (AES), and some microcrystalline diamond grains (0.5–1.0 μm) embedded in the mainly amorphous network were revealed through scanning electron microscope (SEM) and Raman spectrum. The performance of Au/C(B)/n-Si heterojunction solar cells has been given under dark IV rectifying curve and IV working curve (with 100 mW cm−2 illumination). A measurement of open-circuit voltage Voc=580 mV and short-circuit current density Jsc=32.5 mA cm−2 was obtained. Accordingly, the energy conversion efficiency of the device was tentatively determined to be about 7.9% in AM 1.5, 100 mW/cm2 illuminated.  相似文献   

12.
Influence of the roughness (microrelief) of an active interface in p–n junction solar cells (SC) on the photovoltage (the open-circuit voltage Voc) has been studied. Nonuniformity of contact potential difference between p- and n-regions leads to barrier height fluctuation that are exponentially enhanced when dealing with barrier current. This results in some decrease of the Voc value. Three theoretical models of averaging open-circuit voltage were used. Experimental results on p+-AlxGa1−xAs/p+-n-GaAs heterostructure SC with various microrelief, obtained by the anisotropic chemical etching, are compared with theoretical calculations.  相似文献   

13.
Low-energy proton irradiation effects on GaAs/Ge solar cells   总被引:1,自引:0,他引:1  
This paper reports the low-energy proton irradiation effects on GaAs/Ge solar cells for space use. The proton irradiation experiments were performed with a fluence of 1.2×1013 cm−2, energies ranging from 0.1 to 3.0 MeV. The results obtained demonstrate that the irradiation with a proton energy of 0.3 MeV gives rise to the most degradation rates of Isc, Voc and Pmax of the solar cells with no coverglass, which is related to the proton irradiation-induced vacancies near the pn junction in GaAs/Ge cells. The degradation rates of Isc, Voc and Pmax of the solar cells with coverglass increase as the proton energy increases due to the cascade ions induced by collision processes. It is found that the coverglass has an obvious protection effect against the irradiation with the proton energy below 0.5 MeV.  相似文献   

14.
A dye-sensitized TiO2 solar cell was developed and characterized. The IV (current–voltage) characteristics were studied at different temperatures from −40°C to 80°C. The opto-electronic properties of the cell depend on factors like ambient temperature and the time constants of the redox processes at the cell interfaces. The temperature dependence of Voc and Isc were clearly demonstrated. Isc increased with increasing temperature above room temperature, where as Voc increased with decreasing temperature below room temperature. The opto-electronic properties showed oscillatory behavior especially at low temperatures, which may be attributed to the different velocities of the redox processes occurring at the TiO2/dye, dye/electrolyte and the electrolyte/counter electrode interfaces.  相似文献   

15.
Dye-sensitized TiO2 solar cells were fabricated using tridentate ligand ruthenium(II) complexes, [Ru(dcbpy)(tptz)X]X (where dcbpy = 4,4′-dicarboxy-2,2′-bipyridine, tptz = 2,4,6-Tris(2-pyridyl)-s-triazine and X = Cl, SCN, CN) attached to sol–gel processed TiO2 electrodes. The ligand tptz functions as spectator ligand and dcbpy functions as the anchoring ligand with sufficient visible light absorption. The synthesized complexes were characterized before using them in solar cells. The functioning of the solar cells fabricated using different conducting glasses was monitored and the current–voltage characteristics were measured. The efficiencies of different cells were calculated and compared.  相似文献   

16.
When a CuInS2/CdS solar cell was fabricated by depositing CdS thin film with dopant In of 1.0 at% on ternary compound CuInS2 thin film with the lowest resistivity of 5.59 × 10−2 Ωcm, its best result was as follows: Voc = 461 mV, Isc = 26.9 mA, FF = 0.685, η = 5.66% under the illumination of 100 mW/cm2. And its series resistance and lattice mismatch was 5.1 Ω and 3.2%, respectively.Besides, a 4 layer structure solar cell of -CuInS2/high -CuInS2/high -CdS/low - CdS has been fabricated. When thickness of high - CuInS2 was 0.2 μm, its best result was as follows: Voc = 580 mV, Isc = 30.6 mA, FF = 0.697, η = 8.25%. An its series resistance and lattice mismatch were 4.3 Ω and 2.8%, respectively.  相似文献   

17.
CdS/CdTe solar cells have been prepared by periodic pulse electrodepositionmethod. 10.8% efficient cell was made with open circuit voltage (Voc)≈753mV, short-circuit current (Jsc)≈23.6 mA/cm2 and fill factor (FF)≈0.61. Current-voltage-temperature measurments showed the variation of ideality factor (A) from 1.88 at 344 K to 4.49 at 202 K whereas voltage factor (α) was almost constant above 276 K. The junction transport is possibly dominated by a tunneling mechanism. Capacitance measurements gave the value of diffusion potential as 1.2 eV, ionized charged density as 5.9 × 1015 cm−3 and number of interface states (NIS) as 2.8 × 1011 cm−2 eV−1 at zero volt bias. Measurements of open circuit voltage (Voc) with temperature gave the value of barrier height as 1.42 eV.  相似文献   

18.
In this paper, we investigated redox behavior of I and I3 in 3-methoxypropionitrile (MePN) with different concentrations of 1-methyl-3-propylimidazolium iodide (MPII) and iodine by cyclic voltammetry and electrochemical impedance spectroscopy. It was found that the apparent diffusion coefficient (D) values of triiodide and iodide ions, the serial resistance (Rs) and the charge-transfer resistance (Rct) decreased slightly with increase of the concentration of I3 in MePN containing 1.4 M MPII. Moreover, the Rct and D values of triiodide and iodide ions affection on dye-sensitized solar cells (DSCs) should be considered as a whole. The DSCs with the electrolyte (1.4 M MPII, 0.1 M LiI, 0.1 M I2, 0.5 M TBP, in MePN) gave short circuit photocurrent density (Jsc) of 14.44 mA/cm2, open circuit voltage (Voc) of 0.72 V, and fill factor (FF) of 0.69, corresponding to the photoelectric conversion efficiency (η) of 7.17% under one Sun (AM1.5).  相似文献   

19.
Photovoltaic devices were assembled using a conducting polymer; poly (3-thiophenemalonic acid) sensitized TiO2 electrodes and an electrolyte containing I3/I redox couple. This cell exhibited a short-circuit photocurrent (Jsc) of 6.65 mA cm−2, an open circuit voltage (Voc) of 355 mV and an efficiency of 1.5% under the illumination of 100 mW cm−2 (AM 1.5). Addition of an ionic liquid, 1-methyl 3-n-hexylimidazolium iodide, into the electrolyte led to an improvement in the cell performances, achieving an overall efficiency of 1.8% under the same illumination. The average cell characteristics of the later devices are , with a fill factor of 0.65.  相似文献   

20.
The charge transport and transient absorption properties of K27 dye-sensitized solar cell have been investigated. The current–voltage (IV) characteristics of the solar cell were analyzed by the thermionic emission theory. The ideality factor, barrier height and series resistance values of the solar cell were determined. The ideality factor higher than unity indicated the presence of non-ideal behavior in current–voltage characteristics at lower voltages. At the higher voltages, the charge transport mechanism for the solar cell is controlled by a space-charge limited current (SCLC) with an exponential distribution of traps. The built potential values are determined from capacitance–voltage plot and were found to be 0.14 and 0.58 V, respectively. The transient absorption data of K27 DSSC device suggest that the fast and slow phases are taking place. While the fast phase corresponds to regeneration of the dye cation by the iodide redox couple, the slow phase corresponds to the decay of long-lived I2/ TiO2 electron absorption. The best conversion efficiency for K27 DSSC was found to be 0.317% under 100 mW/cm2 (FF=0.584, Voc=480 mV, Isc=1.131 mA). The photocurrent results indicate that the photogeneration of charge carriers is a monophotonic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号