首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过砂岩试件疲劳破坏的声发射实验,分析了砂岩疲劳破坏过程的声发射特性,研究了岩石的疲劳损伤演化规律.按岩石整个疲劳过程的声发射特征及损伤演化规律,并参考岩石不可逆变形发展的三阶段规律可以将其分为四个阶段.岩石疲劳损伤破坏具有突发性,在岩石失稳阶段损伤加速演化.如果以声发射监测和预测岩石疲劳破坏,在损伤量0.4左右即进入失稳阶段,在损伤量0.3左右即进入失效阶段.  相似文献   

2.
Plastic deformation enhances the photoelectron emission from a metal-an effect known as exoelectron emission. Previous results demonstrated that fatigue cycling produces exoelectron emission from localized regions, and that by scanning the surface with a small spot of ultraviolet radiation these fatigued regions may be detected very early in life. This paper demonstrates that the intensity of the localized emission in steel is a true measure of the accumulated damage, and can be correlated with changes in the surface topography. The development of persistent slip bands produces microcracks in the surface oxide revealing bare metal from which the electrons are emitted. The growth of these bands and the formation and propagation of fatigue cracks increases the area of fresh metal surface and hence the emission. The increase in exoelectron emission is very systematic and hence provides a calibration for the prediction of the remaining fatigue life.  相似文献   

3.
Plastic deformation enhances the photoelectron emission from a metal-an effect known as exoelectron emission. Previous results demonstrated that fatigue cycling produces exoelectron emission from localized regions, and that by scanning the surface with a small spot of ultraviolet radiation these fatigued regions may be detected very early in life. This paper demonstrates that the intensity of the localized emission in steel is a true measure of the accumulated damage, and can be correlated with changes in the surface topography. The development of persistent slip bands produces microcracks in the surface oxide revealing bare metal from which the electrons are emitted. The growth of these bands and the formation and propagation of fatigue cracks increases the area of fresh metal surface and hence the emission. The increase in exoelectron emission is very systematic and hence provides a calibration for the prediction of the remaining fatigue life.  相似文献   

4.
The strength differential (SD) has been measured as a function of temperature in a fully hardened 0.2C, 6 Ni steel, quenched and then tempered at 250°C. It is found appropriate to express the results in terms of the intercept flow stresses as extrapolated back to zero plastic strain. The corresponding SD increases significantly with decreasing temperature below the ambient, and the data are well fitted by separating the SD into an athermal component (~3 pct) and a thermally activated component (up to ~15 pct at the liquid-nitrogen temperature). The latter type of contribution is thought to arise from a dilatation which occurs during the activation process for dislocation motion and which causes an increase in the activation energy under compressive loading and a decrease under tensile loading. The parameters obtained via this treatment are consistent with a double-kink Peierlsbarrier mechanism of plastic flow at low temperatures. This paper is based on a doctoral thesis presented in August 1972 by F. B. Fletcher to the Department of Metallurgy and Materials Science at the Massachusetts Institute of Technology.  相似文献   

5.
Tempered martensite-retained austenite microstructures were produced by direct quenching a series of 41XX medium carbon steels, direct quenching and reheating a series of five 0.8C-Cr- Ni-Mo steels and intercritically austenitizing at various temperatures, and quenching a SAE 52100 steel. All specimens were tempered either at 150 °C or at 200 °C. Specimens were subjected to compression and tension testing in the microstrain regime to determine the elastic limits and microplastic response of the microstructures. The retained austenite and matrix carbon content of the intercritically austenized specimens were measured by X-ray diffraction and Mossbauer spectroscopy. The elastic limit of the microstructures decreases with increasing amounts of retained austenite. Refining of the austenite distribution increases the elastic limit. Low elastic limits are mainly due to low flow stresses in the austenite and not internal stresses. The elastic limit correlates with the largest austenite free-mean path by a Hall-Petch type equation. The elastic limit increases with decreasing intercritical austenitizing temperature in the SAE 52100 due to (1) a lower carbon content in the matrix reducing the retained austenite levels and (2) retained carbides that refine grain size and, therefore, the austenite distribution in quenched specimens. The microplastic response of stable austenite-martensite composites may be modeled by a rule of mixtures. In the microplastic region, the strain is accommodated by successively smaller austenite regions until the flow strength matches that of the martensite. Reheating and quenching refines the microstructure and renders the austenite unstable in the microplastic regime, causing transformation of the austenite to martensite by a strain-induced mechanism. The transformation of austenite to martensite occurs by a stress-assisted mechanism in medium carbon steels. The low elastic limits in medium carbon steels were due to the inability of the strain from the stress-assisted transformation of austenite to martensite to balance the plastic strain accumulated in the austenite.  相似文献   

6.
Deformation-band nucleation is analyzed to explain the causes that hinder the development of deformation bands in thermally hardened carbon steels.  相似文献   

7.
Fatigue crack propagation tests were carried out in air and in a 3.5 pct NaCl aqueous solution under cathodic potential of −0.85 V (Ag/AgCl) for aged-hardened high strength steel (Ni−Al−Cr−Mo−C steel). the emphasis in the study was placed on the crack closure behavior of age-hardened materials in air and in the NaCl aqueous solution. The degree of crack closure in air was dependent on the behavior of plastic deformation such as inhomogeneous or homogeneous slip under mixed modes I and II. The underaged material containing coherent precipitates with the matrix had a higher crack opening load in air, compared with the overaged steel containing incoherent precipitates with the matrix. The degrec of crack closure of the underaged material in the NaCl aqueous solution was lower than that in air and was similar to that of overaged materials in the NaCl aqueous solution. It was shown that the decreased crack closure level for the underaged material resulted from accelerated fatigue crack growth under mode I due to hydrogen embrittlement in the aqueous solution.  相似文献   

8.
9.
In order to investigate the fatigue strength and fracture mechanism of salt bath nitrocarburized steels, specimens of the steels SAE 4135 and SAE 4140, in a quenched and tempered state, and additionally in a salt bath nitrocarburized and oxidizing cooled state as well as in a polished (after the oxidizing cooling) and renewed oxidized state, were subjected to comparative rotating bending fatigue tests in inert oil and 5 pct NaCl solution. In addition, some of the quenched and tempered specimens of SAE 4135 material were provided with an approximately 50-μm-thick electroless Ni-P layer, in order to compare corrosion fatigue behavior between the Ni-P layer and the nitride layers. Long-life corrosion fatigue tests of SAE 4135 material were carried out under small stresses in the long-life range up to 108 cycles with a test frequency of 100 Hz. Fatigue tests of SAE 4140 material were carried out in the range of finite life (low-cycle range) with a test frequency of 13 Hz. The results show that the 5 pct NaCl environment drastically reduced fatigue life, but nitrocarburizing plus oxidation treatment was found to improve the corrosion fatigue life over that of untreated and Ni-P coated specimens. The beneficial effect of nitrocarburizing followed by oxidation treatment on cor-rosion fatigue life results from the protection rendered by the compound layer by means of a well-sealed oxide layer, whereby the pores present in the compound layer fill up with oxides. The role of inclusions in initiating fatigue cracks was investigated. It was found that under corrosion fatigue conditions, the fatigue cracks started at cavities along the interfaces of MnS inclusions and matrix in the case of quenched and tempered specimens. The nitrocarburized specimens, however, showed a superposition of pitting corrosion and corrosion fatigue in which pores and nonmetallic inclusions in the compound layer play a predominant role concerning the formation of pits in the substrate.  相似文献   

10.
The issues on the estimation of the surface damage of the products produced from high-strength alloys are considered. Mathematical relationships for a numerical calculation of the surface damage are given. The peculiarities of the evaluation of the surface damage are investigated, as applied to high-strength alloys.  相似文献   

11.
Good toughness in hardened 52100 ball bearing steel is important in order to prevent premature fracture during mounting or service of bearing elements. Steel cleanliness, residual copper content, and carbon content effects have been investigated in relation to fracture mechanics properties, and it was observed that only the carbon content has any relevance for the range of compositions investigated. The effect of hardening and tempering temperatures for conventional furnace-hardening techniques on toughness was investigated, theK lcbeing generally much less sensitive to these parameters than blunt notch toughness testing. Cold deformation of the material prior to martensitic hardening significantly increased the blunt notch toughness. Thermal grain refining treatments did not give the same improved blunt notch toughness as observed for prior cold deformation. Short austenitization cycles (ten seconds) for martensitic hardening resulted in microstructures with high retained austenite contents. This microstructure resulted in higher fracture toughness and retardation of the crack growth rates, the mechanism being associated with transformation toughening in the plastic zone. Inductive tempering of martensitic-hardened 52100 was observed to result in similar blunt notch toughnesses as compared to furnace tempered material of the same hardness. A poor correlation between fracture toughness and blunt notch toughness was observed, particularly for the unstable structures,i.e., microstructures with high levels of retained austenite. Fracture toughness does not represent the intrinsic toughness of high carbon martensite with related high contents of retained austenite.  相似文献   

12.
Stainless steels are used predominantly for their corrosion resistance in moderate to highly aggressive environments. For construction purposes, engineers normally select carbon steel due to low cost, long experience, applicable design rules and a large variety of strength classes. However, different stainless steel types can also provide a very wide range of mechanical properties and they have the advantage of not needing surface protection. Duplex Stainless Steels (DSSs) in particular, are austeno-ferritic steels with twice the mechanical strength of conventional austenitic and ferritic stainless steels and have a potential use in construction. In the early 1980’s, a ‘second generation’ of duplex steels was introduced with better weldability mainly through nitrogen alloying. The most common duplex grade today is the UNS S32205/S31803, which is used in a great number of applications in a wide variety of product forms. This grade was the basis for the development of a ‘third generation’ of duplex steels. These higher alloys are called super-duplex stainless steels and identified as UNS S32750/S32760. The cyclic hardening-softening response, the cyclic stress-strain curve and the microstructure evolution of a high nitrogen duplex stainless steel S32750 have been evaluated and the results compared with reference to low and medium nitrogen duplex stainless steels, S32205 and S32900 grades, respectively. The beneficial effects of nitrogen on the cyclic properties of most modern alloys have been analyzed in terms of the flow stress components, i.e. the back and the friction stress. A phenomenological model is proposed to explain the influence of nitrogen atoms on the cyclic behavior of these steels.  相似文献   

13.
The effect of microstructure on strength and fatigue properties has been investigated in two medium carbon alloy steels (BS 817M40 and BS 835M30) by developing dual-phase, ferritic-martensitic microstructures. Hardness-strength relationships and fatigue resistance at comparatively high strength levels were investigated by producing various microstructures. Conventional quenching and tempering, intercritical annealing and step quenching were used to vary the proportion, morphology and distribution of the ferrite and martensite phases. The results of the present study show that both hardness and strength increase with increasing proportion of martensite and/or hardness of the second phase. The relationship between hardness or strength and martensite percent is not in good agreement with a simple “law of mixtures” but is compatible with a more rapid strength increase at high martensite contents. The dual phase microstructures from the present study show superior near threshold ΔKTH values than normal tempered martensite. The results also show a high degree of correlation between Paris equation m values and fracture toughness KIC, showing that for high m values KIC is low and vice versa. The present experiments show that although crack initiation resistance in dual-phase steels is excellent crack propagation rates are higher than in quenched and tempered microstructures for a given ΔK.  相似文献   

14.
15.
The study of acoustic emission (AE) during deformation of dual-phase steels consisting of ferrite (F) and pearlite (P)/martensite (M) indicates that the AE peak in the yielding region always appears at the beginning of the macroplastic deformation. After macroyielding starts, the AE decreases because the dislocation velocity, νd, decreases. The total AE energy, ∑Elp, emitted during Lüders band propagation is related to the Lüders strain, εl and ∑Elp/ εl, decreases as εl increases because of the increase in ε, resulting from the decrease in dislocation velocity, νd. After quenching from the two-phase region at cooling rates larger than a certain critical value, a second AE peak, which is produced by the cracking mainly at the interfaces between M and F and secondly in martensitic particles, appears in a certain plastic strain range in addition to the one in the yielding region. As the cooling rate becomes too fast, the AE peak in the yielding region disappears, and the second AE peak cannot be completed due to the brittle fracture.  相似文献   

16.
The nucleation and growth of cavities was examined in steel bicrystals (Fe-3%-Si, X 8 CrNiNb 16 13) and in the ODS superalloy Inconel MA 754 (Inconel MA 754 (78% Ni; 20% Cr; 0.5% Ti; 0.3% Al; 0.6% Y2O3). Cavity density distributions were measured on metallographic sections and on cleaved grain boundaries as a function of time, strain, temperature and stress. Nucleation and growth laws were obtained by evaluating the distributions with appropriate models. For the fcc and bcc bicrystals, it was found that cavities nucleated continuously at sulfide and carbide particles during creep. They grew by grain boundary diffusion. But the growth rate was delayed with increasing creep strain due to cavities which nucleated in the surroundings of existing cavities. For the ODS alloy, however, many round cavities preexisted on quasi-boundaries consisting of the aggregate of coarse oxide and carbide particles. They grew initially by diffusion, but with increasing creep time (cavity size), the growth mechanism switched from growth controlled by grain boundary diffusion to growth controlled by power law creep. Implications for life predictions are discussed.  相似文献   

17.
Fatigue tests were conducted on a series of 1800 MPa-class spring steels whose fatigue properties were inclusion controlled. The fatigue tests were conducted on billets and on hot-rolled bars, taking into account the elongation of the oxide-type composite inclusions that were deformed during hot rolling, i.e., controlled inclusions. Anisotropy of the fatigue properties due to the slender shape of the elongated inclusions was also discussed. Fatigue tests were then conducted for both the rolling direction (RD) and transverse direction (TD) in the case of the billets. The fatigue test results in the RD showed a slight difference between billets and bars. The inclusions that were deformed during hot rolling were sufficiently elongated, even for the billet specimens, and differences in the effective inclusion sizes between the billets and their hot-rolled bars for the RD were small. However, there were marked differences in fatigue strength between the RD and TD in the billet specimens: the fatigue strength was almost half in the TD due to the presence of fish-eye fractures originating in large and slender MnS inclusions. In these fatigue tests, the two types of deformable inclusions revealed remarkably different effects on fatigue strength: the deformable oxide-type inclusions never caused fish-eye fracture, although the MnS inclusions found in the billets were extremely detrimental to fatigue strength when stress was applied in the TD.  相似文献   

18.
The effect of temperature on the fatigue of aluminum alloys results from a combination of thermally induced changes in the microstructure and the intrinsic temperature dependence of the fatigue process. These two effects are separated for the first time, and it is shown that the intrinsic fatigue process is thermally activated. Two distinct regimes are identified. For fatigue lives <3 × 106 cycles, the activation energy is 86 kJ/mole in 339 aluminum/15 pct Kaowool composites and 120 kJ/mole in unreinforced 5086 aluminum, i.e., in the range reported for diffusion in aluminum. For fatigue lives >3 × 106 cycles, the activation energy is 240 kJ/mole. The magnitude of all three activation barriers decreases in direct proportion to the applied cyclic stress. These results are consistent with a dislocation model of jog formation at low cyclic stresses and the diffusion-assisted motion of jogs at high cyclic stresses. The activation volumes correspond to dislocation loop lengths of 10 to 30 nm.  相似文献   

19.
The investigations have been conducted by measuring fatigue crack propagation near fatigue threshold in various structural steels differing in chemical composition and strength level. The fatigue crack propagation measurements were carried out using the constant-load-amplitude test in Paris-region, R-constant and Kmax-constant method in near fatigue threshold region. Scanning electron microscopy at fatigue crack front on fracture surface was applied to interpret the influence of crack closure effects on the measured fatigue threshold. Marked fretting oxide deposits distributed on the fracture surface at threshold level were observed in a low load ratio resulting from the combined action of plasticity- and oxide-induced crack closure under laboratory atmosphere. Fatigue threshold dependent on the load ratio appeared to be related to the extent of the crack closure effect. By considering the relationship of reversed plastic zone size and grain size the fatigue threshold in region of crack closure was calculated theoretically. The result has shown a good agreement with the experimentally measured values.  相似文献   

20.
Fatigue test bars fabricated from an SA508 class 3 low-carbon steel plate were cyclically deformed at 300 °C (constant low-cycle fatigue, total strain range Δε = 0.78 pct and 0.48 pct) to crack initiation (100 pct cumulative damage, CD) and to the factors 75, 50, and 25 pct CD. The test bars were cut perpendicular to the stress axis at the center of the gage length. The X-ray diffraction line-broadening (XRD) was performed on the cross sections created by the cuts. Thin foils (∼0.1-μm thick) were prepared from each cross section and used for the transmission electron microscope (TEM) and selected area diffraction (SAD) study. The half-value line breadth change measured by the XRD increased with the CD increase up to 50 pct, beyond which a significant reduction was observed for the 75 and 100 pct CD sample regardless of the incident X-ray beam angle. By the TEM, the undamaged material (0 pct CD) was characterized by high-angle boundaries, small carbide precipitates, and dislocation cell networks in grains. These characteristics did not show any appreciable changes in all of the samples with fatigue damage of the respective levels. Micro-orientation changes of the dislocation cells studied by the SAD of the foils and a statistical data analysis clearly demonstrated that the mean orientation difference in the cells and its standard deviation increased gradually as the CD increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号