首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new empirical model for the retrieval, at a field scale, of the bare soil moisture content and the surface roughness characteristics from radar measurements is proposed. The derivation of the algorithm is based on the results of three experimental radar campaigns conducted under natural conditions over agricultural areas. Radar data were acquired by means of several C-band space borne (SIR-C, RADARSAT) or helicopter borne (ERASME) sensors, operating in different configurations of polarization (HH or VV) and incidence angle. Simultaneously to radar acquisitions, a complete ground truth data base was built up with different surface condition measurements of the mean standard deviation (rms) height s, the correlation length l, and the volumetric surface moisture Mv. This algorithm is more specifically developed using the radar cross-section σ0 (HH polarization and 39° incidence angle off nadir), namely, σ0HH,39, and the differential (HH polarization) radar cross-section Δσ0=σ0,23°σ0,39° in terms of an original roughness parameter, Zs, namely Zs=s2/l, and Mv. A good agreement is observed between model outputs and backscattering measurements over different test fields. Eventually, an inversion technique is proposed to retrieve Zs and Mv from radar measurements.  相似文献   

2.
A model for simulating the measured radar backscattering coefficient of vegetation-covered soil surfaces is presented in this study. The model consists of two parts: the first is a soil surface model to describe the backscattered radar pulses from a rough soil surface, and the second part takes into account the effect of vegetation cover. The soil surface is characterized by two parameters, the surface height standard deviation σ and the horizontal correlation length l. The effect of vegetation canopy scattering is incorporated into the model by making the radar pulse subject to two-way attenuation and volume scattering when it passes through the vegetation layer. These processes are characterized by the two parameters, the canopy optical thickness τ and the volume scattering factor η. The model results agree well with the measured angular distributions of the radar backscattering coefficient for HH polarization at the 1.6 GHz and 4.75 GHz frequencies over grass-covered fields. These observations were made from an aircraft platform during six flights over a grass watershed in Oklahoma. It was found that the coherent scattering from soil surfaces is very important at angles near nadir, while the vegetation volume scattering is dominant at larger incident angles (> 30°). The results show that least-squares fits to scatterometer data can provide reliable estimates of the surface roughness parameters, particularly the surface height standard deviation σ. The range of values for σ for the six flights is consistent with a 2 or 3 dB uncertainty in the magnitude of the radar response.  相似文献   

3.
The aim of this study was to estimate soil moisture from RADARSAT-2 Synthetic Aperture Radar (SAR) images acquired over agricultural fields. The adopted approach is based on the combination of semi-empirical backscattering models, four RADARSAT-2 images and coincident ground measurements (soil moisture, soil surface roughness and vegetation characteristics) obtained near Saskatoon, Saskatchewan, Canada during the summer of 2008. The depolarization ratio (χv), the co-polarized correlation coefficient (ρvvhh) and the ratio of the absolute value of cross polarization to crop height (Λvh) derived from RADARSAT-2 data were analyzed with respect to changes in soil surface roughness, crop height, soil moisture and vegetation water content. This sensitivity analysis allowed us to develop empirical relationships for soil surface roughness, crop height and crop water content estimation regardless of crop type. The latter were then used to correct the semi-empirical Water-Cloud model for soil surface roughness and vegetation effects in order to retrieve soil moisture data. The soil moisture retrieved algorithm is evaluated over mature crop fields (wheat, pea, lentil, and canola) using ground measurements. Results show average relative errors of 19%, 10%, 25.5% and 32% respectively for the retrieval of crop height, soil surface roughness, crop water content and soil moisture.  相似文献   

4.
The sensitivity of TerraSAR-X radar signals to surface soil parameters has been examined over agricultural fields, using HH polarization and various incidence angles (26°, 28°, 50°, 52°). The results show that the radar signal is slightly more sensitive to surface roughness at high incidence (50°–52°) than at low incidence (26°–28°). The difference observed in the X-band, between radar signals reflected by the roughest and smoothest areas, reaches a maximum of the order of 5.5 dB at 50°–52°, and 4 dB at 26°–28°. This sensitivity increases in the L-band with PALSAR/ALOS data, for which the dynamics of the return radar signal as a function of soil roughness reach 8 dB at HH38°. In the C-band, ASAR/ENVISAT data (HH and VV polarizations at an incidence angle of 23°) are characterised by a difference of about 4 dB between the signals backscattered by smooth and rough areas.Our results also show that the sensitivity of TerraSAR-X signal to surface roughness decreases in very wet and frozen soil conditions. Moreover, the difference in backscattered signal between smooth and rough fields is greater at high incidence angles. The low-to-high incidence signal ratio (Δσ° = σ26°–28°/σ50°–52°) decreases with surface roughness, and has a dynamic range, as a function of surface roughness, smaller than that of the backscattering coefficients at low and high incidences alone. Under very wet soil conditions (for soil moistures between 32% and 41%), the radar signal decreases by about 4 dB. This decrease appears to be independent of incidence angle, and the ratio Δσ° is found to be independent of soil moisture.  相似文献   

5.
The arid and semi-arid sagebrush-grass ecosystem occupies a substantial portion of rangelands in the western United States. Using remote sensing techniques to map the percent of sagebrush, grass/forb, and bare ground components is necessary for forage production estimation and natural resource management over large areas. However optical data have significant deficiencies in these ecosystems because of exposed bright soil, spectrally-indeterminate vegetation, and a large dead vegetation component. Radar data also have deficiencies caused by factors such as antenna pattern calibration, local incidence angle (LIA), soil moisture, and surface roughness. With the complementary vegetation information gained from optical data and radar data, these two datasets were fused to estimate 10-m sagebrush, grass, and bare ground percent cover in the non-forested areas of Yellowstone National Park, which is a representative native western rangeland ecosystem of the US. The datasets were processed to resolve the issues of antenna pattern calibration and LIA effect. Peak green Landsat, late fall Airborne Visible and Infrared Imaging Spectrometer (AVIRIS), and Airborne Synthetic Aperture Radar (AirSAR) data were fused in this analysis. AVIRIS, Landsat, AirSAR and elevation data were used to segment the study area into two main subcategories of “pure grass” and “mixed sagebrush and grass”. Landsat Tasseled Cap Greenness (LTCG) was used to retrieve bare land and grass percentages in pure grass areas. In the areas with mixed grass and sagebrush, standardized LTCG and radar Cvv were used to derive the vegetation cover percentage, and the ratio of standardized LTCG and radar Lhv was further used to calculate the relative abundance of sagebrush and grass. Comparison between the field and remote sensing estimations shows the correlation coefficients were 0.838, 0.746, and 0.830 for bare land, grass, and sagebrush, respectively. When grouped into three discrete categories of “low”, “medium”, and “high”, the overall accuracies were 79.4%, 75.9%, and 77.6%, respectively. Our study shows the potential for application of global spaceborne C- and L-band radar and optical data fusion for large-area rangeland monitoring.  相似文献   

6.
The objective of this investigation is to analyze the sensitivity of ASAR (Advanced Synthetic Aperture Radar) data to soil surface parameters (surface roughness and soil moisture) over bare fields, at various polarizations (HH, HV, and VV) and incidence angles (20°-43°). The relationships between backscattering coefficients and soil parameters were examined by means of 16 ASAR images and several field campaigns. We have found that HH and HV polarizations are more sensitive than VV polarization to surface roughness. The results also show that the radar signal is more sensitive to surface roughness at high incidence angle (43°). However, the dynamics of the radar signal as a function of soil roughness are weak for root mean square (rms) surface heights between 0.5 cm and 3.56 cm (only 3 dB for HH polarization and 43° incidence angle). The estimation of soil moisture is optimal at low and medium incidence angles (20°-37°). The backscattering coefficient is more sensitive to volumetric soil moisture in HH polarization than in HV polarization. In fact, the results show that the depolarization ratio σHH0HV0 is weakly dependent on the roughness condition, whatever the radar incidence. On the other hand, we observe a linear relationship between the ratio σHH0HV0 and the soil moisture. The backscattering coefficient ratio between a low and a high incidence angle decreases with the rms surface height, and minimizes the effect of the soil moisture.  相似文献   

7.
Abstract

Most attempts at predicting soil moisture from C-band microwave backscattering coefficients for bare soil are made by fitting experimental calibration relations obtained for limited ranges of incidence angle and soil surface roughness. In this paper, a more general approach is discussed using an inversion procedure to extend the use of a single experimental calibration relation to a wider range of incidence angle and surface roughness. A correcting function is proposed to normalize the backscattering coefficients to the conditions (incidence angle and surface roughness) of the calibration relation. This correcting function was derived from simulated data using the physical optics or KirchhofTs scatter model using the scalar approximation. Before discussing the inversion procedure, the backscattering coefficients calculated by the model have been compared with experimental data measured in the C-band, HH polarization and three incidence angles (Θ= 15°, 23°, 50°) under a wide range of surface soil moisture conditions (0.02Hv  0.35cm3 cm-3) and for a single quite smooth soil surface roughness (0–011 s  OOI4/n)m. The model was found to be experimentally validated from 15° to 23° of incidence and for surface soil moistures higher than 0-I0cm3cm-3. For the inversion procedure, it is assumed to have a wider range of validity (15°  Θ 35° ) for ihc incidence angle. A sensitivity analysis of the model to errors on roughness parameter and incidence angle was performed in order to assess the feasability and suitability of the described inversion procedure.  相似文献   

8.
A great number of spectral vegetation indices (VIs) have been developed to estimate biophysical parameters of vegetation. Traditional techniques for evaluating the performance of VIs are regression-based statistics, such as the coefficient of determination and root mean square error. These statistics, however, are not capable of quantifying the detailed relationship between VIs and biophysical parameters because the sensitivity of a VI is usually a function of the biophysical parameter instead of a constant. To better quantify this relationship, we developed a “sensitivity function” for measuring the sensitivity of a VI to biophysical parameters. The sensitivity function is defined as the first derivative of the regression function, divided by the standard error of the dependent variable prediction. The function elucidates the change in sensitivity over the range of the biophysical parameter. The Student's t- or z-statistic can be used to test the significance of VI sensitivity. Additionally, we developed a “relative sensitivity function” that compares the sensitivities of two VIs when the biophysical parameters are unavailable.  相似文献   

9.
Estimating surface parameters by radar-image inversion requires the use of well-calibrated backscattering models. None of the existing models is capable of correctly simulating scatterometer or satellite radar data. We propose a semi-empirical calibration of the Integral Equation Model (IEM) backscattering model in order to better reproduce the radar backscattering coefficient over bare agricultural soils. As correlation length is not only the least accurate but also the most difficult to measure of the parameters required in the models, we propose that it be replaced by a calibration parameter that would be estimated empirically from experimental databases of radar images and field measurements. This calibration was carried out using a number of radar configurations with different incidence angles, polarization configurations, and radar frequencies. Using several databases, the relationship between the calibration parameter and the surface roughness was determined for each radar configuration. In addition, the effect of the correlation function shape on IEM performance was studied using the three correlation functions (exponential, fractal, and Gaussian). The calibrated version of the IEM was then validated using another independent set of experimental data. The results show good agreement between the backscattering coefficient provided by the radar systems and that simulated by the calibrated version of the IEM. This calibrated version of the IEM can be used in inversion procedures to retrieve surface roughness and/or moisture values from radar images.  相似文献   

10.
A full two-dimensional Navier-Stokes algorithm is used to investigate unsteady, incompressible viscous flow past an airfoil leading edge with surface roughness that is characteristic of ice accretion. The roughness is added to the surface through the use of a Prandtl transposition and can generate both small-scale and large-scale roughness. The focus of the study is a detailed flow analysis of the unsteady velocity fluctuations and vortex shedding induced by the surface roughness. The results of this study are compared to experimental data on roughness-induced transition for the same roughness geometry. A comparison is made between “fluctuation intensity” values from the current algorithm to experimentally determined turbulence intensity values. The effects of the roughness Reynolds number, Rek, are investigated and compared to experimental values of the critical roughness Reynolds number. The authors speculate that there may be a possible correlation between unsteady roughness-induced vortex shedding and the onset of experimentally measured transitional flow downstream of large-scale roughness.  相似文献   

11.
The Integral Equation Model (IEM) is the most widely-used, physically based radar backscatter model for sparsely vegetated landscapes. In general, IEM quantifies the magnitude of backscattering as a function of moisture content and surface roughness, which are unknown, and the known radar configurations. Estimating surface roughness or soil moisture by solving the IEM with two unknowns is a classic example of under-determination and is at the core of the problems associated with the use of radar imagery coupled with IEM-like models. This study offers a solution strategy to this problem by the use of multi-angle radar images, and thus provides estimates of roughness and soil moisture without the use of ancillary field data. Results showed that radar images can provide estimates of surface soil moisture at the watershed scale with good accuracy. Results at the field scale were less accurate, likely due to the influence of image speckle. Results also showed that subsurface roughness caused by rock fragments in the study sites caused error in conventional applications of IEM based on field measurements, but was minimized by using the multi-angle approach.  相似文献   

12.
Surface roughness is a key parameter of radar backscatter models designed to retrieve surface soil moisture (θS) information from radar images. This work offers a theory‐based approach for estimating a key roughness parameter, termed the roughness correlation length (L c). The L c is the length in centimetres from a point on the ground to a short distance for which the heights of a rough surface are correlated with each other. The approach is based on the relation between L c and h RMS as theorized by the Integral Equation Model (IEM). The h RMS is another roughness parameter, which is the root mean squared height variation of a rough surface. The relation is calibrated for a given site based on the radar backscatter of the site under dry soil conditions. When this relation is supplemented with the site specific measurements of h RMS, it is possible to produce estimates of L c. The approach was validated with several radar images of the Walnut Gulch Experimental Watershed in southeast Arizona, USA. Results showed that the IEM performed well in reproducing satellite‐based radar backscatter when this new derivation of L c was used as input. This was a substantial improvement over the use of field measurements of L c. This new approach also has advantages over empirical formulations for the estimation of L c because it does not require field measurements of θS for iterative calibration and it accounts for the very complex relation between L c and h RMS found in heterogeneous landscapes. Finally, this new approach opens up the possibility of determining both roughness parameters without ancillary data based on the radar backscatter difference measured for two different incident angles.  相似文献   

13.
Soil moisture retrieval is often confounded by the influence of vegetation and surface roughness on the backscattered radar signal in vegetated areas. In this study, a semi-empirical methodology is proposed to retrieve soil moisture in prairie areas. The effect of vegetation is eliminated by the ratio vegetation method and water cloud model (WCM), respectively. The conditions of vegetation are characterized by leaf area index (LAI), vegetation water content (VWC), normalized difference vegetation index (NDVI), and enhanced vegetation index (EVI), respectively. To remove the dependence on surface roughness, the dielectric constant is explicitly expressed as the function of co-polarization backscattering coefficients and sensor parameters based on the Dubois model. The ground measurements and satellite data collected from the Ruoergai and Wutumeiren prairies of China allow for validating the feasibility and effectiveness of the proposed methodology. From the perspective of soil moisture retrieval accuracy, the ratio vegetation method performs better than WCM. In the Ruoergai prairie, the best soil moisture retrieval result is obtained when EVI is used, with correlation coefficient (r) and root mean square error (RMSE) of 0.87 and 3.50 vol.%, respectively. While in the Wutumeiren prairie, the lowest retrieval error is obtained when LAI is used, with r and RMSE values of 0.79 and 5.73 vol.%, respectively. These results demonstrate that the Dubois model has a potential for enhancing soil moisture retrieval in prairie areas using synthetic aperture radar (SAR) and optical data.  相似文献   

14.
Monitoring the characteristics of spatially and temporally distributed soil moisture is important to the study of hydrology and climatology for understanding and calculating the surface water balance. The major difficulties in retrieving soil moisture with Synthetic Aperture Radar (SAR) measurements are due to the effects of surface roughness and vegetation cover. In this study we demonstrate a technique to estimate the relative soil moisture change by using multi‐temporal C band HH polarized Radarsat ScanSAR data. This technique includes two components. The first is to minimize the effects of surface roughness by using two microwave radar measurements with different incidence angles for estimation of the relative soil moisture change defined as the ratio between two soil volumetric moistures. This was done by the development of a semi‐empirical backscattering model using a database that simulated the Advanced Integral Equation Model for a wide range of soil moisture and surface roughness conditions to characterize the surface roughness effects at different incidence angles. The second is to reduce the effects of vegetation cover on radar measurements by using a semi‐empirical vegetation model and the measurements obtained from the optical sensors (Landsat TM and AVHRR). The vegetation correction was performed based on a first‐order semi‐empirical backscattering vegetation model with the vegetation water content information obtained from the optical sensors as the input. For the validation of this newly developed technique, we compared experimental data obtained from the Southern Great Plain Soil Moisture Experiment in 1997 (SGP97) with our estimations. Comparison with the ground soil moisture measurements showed a good agreement for predication of the relative soil moisture change, in terms of ratio, with a Root Mean Square Error (RMSE) of 1.14. The spatially distributed maps of the relative soil moisture change derived from Radarsat data were also compared with those derived from the airborne passive microwave radiometer ESTAR. The maps of the spatial characteristics of the relative soil moisture change showed comparable results.  相似文献   

15.
16.
Satellite radar backscattering coefficient σ0 data from ENVISAT-ASAR and Normalized Difference Vegetation Index (NDVI) data from SPOT-VEGETATION are assimilated in the STEP model of vegetation dynamics. The STEP model is coupled with a radiative transfer model of the radar backscattering and NDVI signatures of the soil and herbaceous vegetation. These models are driven by field data (rainfall time series, soil properties, etc.). While some model parameters have fixed values, some other parameters have target values to be optimized. The study focuses on a well documented 1 km2 homogeneous area in a semi-arid region (Gourma, Mali).We here investigate whether departures between model predictions and the corresponding data result from field data errors, in situ data lack of representativeness or some model shortcomings. For this purpose we introduce an evolutionary strategy (ES) approach relying on a bi-objective function to be minimized in the data assimilation/inversion process. Several numerical experiments are conducted, in various mono-objective and bi-objective modes, and the performances of the model predictions compared in terms of NDVI, backscattering coefficient, leaf area index (LAI) and biomass.It is shown that the bi-objective ES leads to improved model predictions and also to a better readability of the results by exploring the Pareto front of optimal and admissible solutions. It is also shown that the information brought from the optical sensor and the radar is coherent; that the corresponding radiative transfer models are also coherent; that the representativeness of in situ data can be compared to satellite data through the modeling process. However some systematic biases on the biomass predictions (errors in the range 140 to 300 kg ha− 1) are observed. Thanks to the bi-objective ES, we are able to identify some likely shortcoming in the vegetation dynamics model relating the LAI to the biomass variables.  相似文献   

17.
Studies over the past 25 years have shown that measurements of surface reflectance and temperature (termed optical remote sensing) are useful for monitoring crop and soil conditions. Far less attention has been given to the use of radar imagery, even though synthetic aperture radar (SAR) systems have the advantages of cloud penetration, all-weather coverage, high spatial resolution, day/night acquisitions, and signal independence of the solar illumination angle. In this study, we obtained coincident optical and SAR images of an agricultural area to investigate the use of SAR imagery for farm management. The optical and SAR data were normalized to indices ranging from 0 to 1 based on the meteorological conditions and sun/sensor geometry for each date to allow temporal analysis. Using optical images to interpret the response of SAR backscatter (σo) to soil and plant conditions, we found that SAR σo was sensitive to variations in field tillage, surface soil moisture, vegetation density, and plant litter. In an investigation of the relation between SAR σo and soil surface roughness, the optical data were used for two purposes: (1) to filter the SAR images to eliminate fields with substantial vegetation cover and/or high surface soil moisture conditions, and (2) to evaluate the results of the investigation. For dry, bare soil fields, there was a significant correlation (r2=.67) between normalized SAR σo and near-infrared (NIR) reflectance, due to the sensitivity of both measurements to surface roughness. Recognizing the limitations of optical remote sensing data due to cloud interference and atmospheric attenuation, the findings of this study encourage further studies of SAR imagery for crop and soil assessment.  相似文献   

18.
Abstract

Possible use of synthetic aperture radars (SAR) for monitoring agricultural canopies is investigated in this paper. Data have been acquired on the Orgcval watershed during the AGRISCATT'88 campaign. Four radar experiments were carried out with the airborne scattcrometer ERASME (C and X bands, HH and VV polarizations, multi-incidence angles). Simultaneous ground measurements (soil moisture, leaf area index, water content of the canopy) were conducted on 11 wheat fields. Backscattering coefficients of the canopies arc interpreted in the framework of semi-empirical ‘water-cloud’ models. A simple paramctrization of the angular effect of soil roughness is introduced, allowing the simultaneous use of multi-incidence angle radar data. With a unique set of parameters for each radar configuration ‘ frequency and polarization’ the water-cloud model appears to describe adequately the backscattering of all the fields, over the range of incidence angles. It is shown that in this case, attenuation is the dominant effect of the vegetation and an inversion algorithm is proposed for estimating the water content of vegetation. This algorithm requires measurements at two different incidence angles and various combinations of radar configurations are then tested.  相似文献   

19.
利用多时相ASAR数据反演黑河流域中游地表土壤水分   总被引:5,自引:1,他引:4       下载免费PDF全文
土壤水分是地表能、水循环过程中的重要变量之一,利用主动微波遥感,特别是合成孔径雷达(SAR)进行土壤水分的反演已经越来越受到人们的关注。地表与微波相互作用机理非常复杂,受到粗糙度的强烈影响,成为制约土壤水分准确反演的一个重要因素。利用3景时序接近的ASAR影像对黑河中游临泽草地试验区地表参数进行了多通道的反演,获得了像元尺度上的粗糙度分布状况,从而不需要借助粗糙度的地面测量辅助信息,节省了工作量。土壤水分反演取得了较为满意的结果(均方根误差< 6%)。   相似文献   

20.
As a basis for inversion algorithms, there is a need for the development of simple backscattering soil models which can account for the variations of incidence angle observed in the same picture or in multiangle systems. A correction factor for the variations of incidence angle is therefore coupled with a classical linear model of the variation of backscattering coefficient with surface soil moisture in a four-parameter model. The correction factor is based on the cosine-type behaviour of the backscattering coefficient as a function of incidence angle, which is observed for rough agricultural surfaces. This simple model is tested on radar measurements performed over a large range of radar configurations. The model is shown to reproduce correctly the observed variations of the radar signal with incidence angle and soil moisture. Its parameters have a physical sense and vary as expected, from literature, with frequency and polarization. When tested on data simulated by the analytical Integral Equation Model, the results of the cosine model are confirmed, as well as the variation of its calculated parameters with frequency and polarization. The inversion of the model with the angular correction factor shows that the cosine model allows the retrieval of soil moisture with a precision of about 20 per cent of the value at C band and at HV and HH polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号