首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, the effect of bolt clamping force on the fatigue life of bolted double shear lap joints was investigated. To do so, fatigue tests were carried out on the bolt clamped double shear lap joint specimens made of aluminum alloy 2024-T3. These fatigue tests were conducted with applied torques of 0.25, 2 and 4 N m at different cyclic longitudinal load levels in un-lubricated and lubricated states. From these tests the stress–life (SN) data for different clamping forces for un-lubricated and lubricated states were obtained. The results show that clamping force increases fatigue life compared to clearance fit specimens. In general, at higher tightening torque higher fatigue lives were achieved, however, below a certain load level the life improvement was discontinued because of fretting phenomenon. Also lubricating the parts of the specimens reduces the advantage of clamping force or torque tightening.  相似文献   

2.
In this paper, the effects of bolt torque tightening on the fatigue strength of double‐lap simple bolted and hybrid (bolted/bonded) joints have been studied experimentally. To do so, two types of joints, that is, double‐lap simple and hybrid (bolted/bonded) joints, were studied. For each type of joints, three sets of specimens were prepared and subjected to the tightening torque of 1, 2.5 and 5 Nm, and then, fatigue tests were carried out at different cyclic longitudinal load levels. Experimental tests results showed that the hybrid joints have better fatigue performance in comparison with the simple bolted joints. In addition, the investigation revealed the positive role of tightening torque on the fatigue life of both simple and hybrid joints.  相似文献   

3.
In this paper, the effects of tightening torque (clamping force) on the fatigue crack growth rate and stress intensity factors in cracked single lap simple bolted and hybrid (adhesive/bolted) joints have been studied experimentally and numerically. To do so, series of fatigue crack growth tests for two different amounts of tightening torque in Aluminum alloy 2024-T3 pre-cracked joints have been carried out to record the fatigue crack growth and also the fatigue life of specimens. In the numerical part, finite element method was employed to obtain the stress intensity factors and also the effective stress intensity factor ranges for different crack lengths to explain the behavior of fatigue crack propagation. It was found that the hybrid joint has longer fatigue crack growth life compared to the simple bolted joint at a given bolt tightening torque. The results also showed that a higher bolt tightening torque provides improved fatigue crack growth life for both types of the joints.  相似文献   

4.
In this research, the effect of the tightening torque on the fatigue strength of 2024-T3 double lap simple bolted and hybrid (bolted–bonded) joints have been investigated experimentally by conducting fatigue tests and numerically by implementing finite element analysis. To do so, three sets of specimens were prepared and each of them subjected to tightening torque of 1, 2.5 and 5 Nm and then fatigue tests were carried out under different cyclic longitudinal load levels. In the numerical method, the effect of the tightening torque on the fatigue strength of the considered joints has been studied by means of volumetric method. To obtain stress distribution around the notch (bolt hole) which is required for the volumetric method, nonlinear finite element simulations were carried out. In order to estimate the fatigue life, the available smooth S–N curve of Al2024-T3 and the fatigue notch factors obtained from the volumetric method were used. The estimated fatigue life was compared with the available experimental test results. The investigation shows that there is a good agreement between the life predicted by the volumetric method and the experimental results for different specimens with a various amount of tightening torques. The results obtained from the experimental analysis showed that the hybrid joints have a better fatigue strength compared to the simple bolted joints. In addition, the volumetric method and experimental results revealed that the fatigue life of both kinds of the joints were improved by increasing the clamping force resulting from the torque tightening due to compressive stresses which appeared around the bolt hole.  相似文献   

5.
In this research, the effects of torque tightening on the fatigue strength of 2024-T3 aluminium alloy double lap bolted joints have been studied via experimental and multiaxial fatigue analysis. To do so, three sets of the specimens were prepared and each subjected to different levels of torque i.e. 1, 2.5 and 5 N m and then fatigue tests were carried out at various cyclic longitudinal load levels. A non-linear finite element ANSYS code was used to obtain stress and strain distribution in the joint plates due to torque tightening of bolt and longitudinal applied loads. Fatigue lives of the specimens were estimated with six different multiaxial fatigue criteria by means of local stress and strain distribution obtained from finite element analysis. Multiaxial fatigue analysis and experimental results revealed that the fatigue life of double lap bolted joints were improved by increasing the clamping force due to compressive stresses which appeared around the hole.  相似文献   

6.
In this paper, the effect of bolt clamping force on the fatigue life of bolted double shear lap joints was investigated numerically. To do so, finite element simulation results were used to illustrate the trends occurred in experimental fatigue tests showing the effect of bolt clamping on improving the fatigue life of double shear lap joints. The results show that clamping force decreases the resultant longitudinal stress at the hole edge thus the fatigue life increases compared to clearance fit specimens. In general, at higher tightening torque longer fatigue lives were achieved, however, below a certain load level the life improvement was discontinued because of fretting occurrence. Also lubricating the specimens reduces the advantages of the clamping force.  相似文献   

7.
预腐蚀铝合金典型螺栓单搭接件疲劳寿命研究   总被引:1,自引:0,他引:1  
模拟飞机服役环境,对航空LY12 铝合金板材典型螺栓单搭接试验件做了预腐蚀试验,然后通过疲劳试验得到了未腐蚀试验件和预腐蚀后试验件的疲劳寿命。通过对试验件分解检查,分析了腐蚀对航空LY12 铝合金典型螺栓单搭接件的影响。建立了考虑腐蚀影响的基于断裂力学的沉孔螺栓搭接件疲劳寿命计算模型,对预腐蚀搭接件的疲劳寿命进行了计算和分析。结果表明:螺栓孔附近和搭接面腐蚀较表面其他部位严重,腐蚀产物的膨胀作用下产生了“枕垫效应”;计算模型得到的疲劳寿命与试验寿命吻合较好,其中模型1 最大相对误差为36.7%,模型2 的最大相对误差为25.7%。搭接件不同的腐蚀程度要选择不同的计算模型才能得出精确的结果。在分析较严重的腐蚀对搭接件疲劳寿命影响时,应考虑搭接面的多腐蚀损伤。  相似文献   

8.
通过试验测试与数值模拟相结合的方法对三维六向编织复合材料的螺栓连接性能进行了研究。首先,通过拉伸试验对不同侧向约束螺接方式连接件的连接强度进行了测试。测试结果表明:单搭连接结构的二次弯曲现象明显,连接强度与侧向约束有一定的关系,使用垫片可有效提高连接强度,螺栓拧紧力矩增加对连接强度影响不大;连接结构的破坏模式包括挤压破坏和拉伸破坏,在孔径较小时其主导破坏模式是挤压破坏。随后,基于测试中发现的破坏模式,建立了基于点应力准则的分析模型,并使用升温法实现螺栓拧紧力矩的施加。通过数值结果与试验结果的比较验证了分析模型的可靠性。最后,利用得到验证的分析模型,分析了单搭连接的二次弯曲现象,获得了侧向约束面积、螺栓拧紧力矩及连接平板厚度对单搭单螺栓连接结构力学性能的影响规律。分析结果表明:当侧向约束应力增加时,连接强度表现为先增加后降低的规律。  相似文献   

9.
The effects of hygrothermal cycling upon the performance of a bolted composite joint was examined. Bolt torque relaxed as the number of environmental cycles increased. Comparison with analytical results suggested that the bolt torque “zigzag” behavior probably results from the natural sensitivity of bolted composite joints to the existing ambient temperature and moisture. The washer effect and specimen surface finishes were investigated to study the friction effect on joint bearing performance. Fatigue tests of specimens exposed to hygrothermal cycling exhibited greater hole elongation than specimens not exposed. High preload does improve static failure strength and the fatigue life of specimens under room conditions. Tests run on IM6/3501-6 material specimens with hygrothermal cycling show reasonable declines in fatigue life. The moisture weight gains of composites under hygrothermal cycling exposure were measured and compared to numerical results; good correlation was obtained. As a result, bolt failure occurred in some fatigue tests and is most frequently associated with large thickness-to-diameter ratio. The peak-to-peak stress was defined to study the effect of the R-ratio on bolts for the bolt failure problem.  相似文献   

10.
In this paper the effect of cold expansion on fatigue life improvement of aluminum alloy 2024-T3 plates used in double shear lap joints is investigated experimentally by conducting fatigue tests and numerically by implementing finite element simulations. In the experimental part, fatigue tests were carried out on the plates with cold expansion levels of 0%, 1.5% and 4.7% which were used in double shear lap joints. In the numerical study, three-dimensional finite element models were employed to predict stress distributions in the cold expanded plates used in the double shear lap joint. The results obtained from finite element simulation, have been employed to explain the trends which were observed in the experimentally attained SN data and the fatigue crack initiation location. The experimental and numerical results showed that cold expansion improves fatigue life at low load levels and the life enhancement is more for the bigger cold expansion size. However, the fatigue life improvement is smaller in double shear lap joints compared to a single cold expanded plate.  相似文献   

11.
In this paper, the effect of electroless nickel–phosphorous coatings on the fatigue and fretting fatigue behaviour of Al 7075-T6 bolted plates has been investigated. A double-lap bolted joint specimen was designed and manufactured from the aluminium plates and subsequently coated with Ni–P coatings of 40 μm in thickness with a high phosphorous content of 10–13 wt.%. Then, different tightening torques were applied to clamp the plates together with the aim of studying the effect of clamping force on the fretting fatigue life of the joints. Ni–P coatings were found to protect Al 7075-T6 clamped plates against fretting fatigue damages even at low fatigue loads where the uncoated joints showed a large reduction in their fatigue life due to the fretting effects. Fretting fatigue life of moderately and firmly clamped plates was successfully improved by approximately 30–40% and 50–60% respectively after the application of Ni–P coatings. Furthermore, fatigue cracks were found at the outer surface of the aluminium substrate at the edge of the hole associated with nodular defects whose deleterious effect was more pronounced at high cyclic loads. The Ni–P deposit presented a very good adhesion to the substrate at low and moderate loads; however, considerable delaminations and fracture of the coating film at high cyclic loads was observed.  相似文献   

12.
对含多处损伤(Multiple Side Damage,MSD)宽板搭接件做了等幅疲劳试验和断口分析,得到搭接件的疲劳寿命和孔边MSD裂纹的形成特点、裂纹前沿形状及扩展历程。结果表明,搭接件的疲劳破坏具有一定的隐蔽性,其疲劳寿命的绝大部分消耗在螺栓头下裂纹扩展阶段,当孔间裂纹出现首次连通时,搭接件剩余寿命约为总寿命的0.7%~9.4%。基于有限元软件FRANC2D/L和裂纹扩展分析软件AFGROW,建立了考虑钉载、第二弯矩和孔间裂纹干涉等影响因素的含MSD宽板搭接件疲劳寿命计算模型,并对孔边多裂纹的扩展寿命进行了计算分析。计算结果与试验结果的对比表明,该文所建寿命计算模型具有一定的精度,能满足工程需要,计算结果和结论可作为该类结构损伤容限设计的参考依据。  相似文献   

13.
In this research the effect of bolt interference fit on the fatigue life of lap joints in double shear was investigated by conducting experimental fatigue tests and also analytically by FE simulation. In the experimental part, fatigue tests were carried out on specimens made from aluminium alloy 2024-T3 plates joined together as double lap joints and secured using bolts having fits ranging from zero clearance to different levels of interference. The results demonstrate how the failure is affected using different levels of interference fit. In the numerical study, 3-D FE models were used to simulate the different pin in hole fits considered and the results have been used to help explain the trends which were observed in the experimentally obtained SN curve behaviour.  相似文献   

14.
The fatigue behaviour of single‐ and double‐rivet aluminum alloy 5754‐O self‐piercing riveted (SPR) lap joints has been investigated experimentally and analytically. With the single rivet, the experimental program involves a set of 27 cyclic tension tests on joints with 1‐, 2‐ or 3‐mm‐thick sheet coupons. In most cases (85%), fatigue cracks are found to initiate in the gross section on the faying surface of the upper sheet. With two rivets (installed in two rows), the experimental program consists of nine cyclic tension tests, three for each of the three combinations of riveting orientation possible, on SPR joints consisting of 2‐mm‐thick sheet specimens. The fatigue life of double‐rivet joints is found to be strongly dependent on the orientation combination of the rivets. Monotonic tests with the double‐rivet joints also reveal an influence of orientation combination. In addition to experiments, values of local stress and rivet‐sheet microslip in the single‐rivet joints have been evaluated through three‐dimensional elastic finite‐element analysis. The analyses are used to interpret experimental observations of fatigue crack initiation location, life and fretting damage severity.  相似文献   

15.
An experimental investigation is conducted into the damage progression and strength of bolted joints with fibre-reinforced composite laminates and countersunk fasteners. The main goal of the experimental investigation is to characterise the effect of the countersink geometry on the load-carrying capacity of single lap joints in comparison to the straight-shank case. The effects of bolt torque, clearance and countersink height ratio on the damage progression and joint strength are also studied. Experimental tests and detailed microscopy studies are conducted on a bearing test specimen with a straight-edged hole, and several single-lap joint configurations with countersunk fasteners. It is found that introduction of the countersunk hole roughly halves the bearing stress, and causes delamination for some configurations. This delamination is primarily located at the start of the countersink region, though is found to be triggered by other damage mechanisms and has only minor influence on the results. Bolt torque increases the density of through-thickness damage though limits its extension from the hole edge, whilst bolt clearance causes localisation of the damage region. Increasing the ratio of the countersink depth to the laminate thickness reduces the extent of bearing and promotes bending, with a change to net section failure at large ratios.  相似文献   

16.
Basic parameters of the bolt‐nut joints, which are ones of the most important elements of assembly processes, are the torque, bolt preload and friction coefficients between bolt and nut interfaces. In bolted joints tightened with torque and angle‐controlled method, friction coefficients of the fasteners are highly significant because they affect final torque and bolt preload values directly, creating a large uncertainty in regard to meet the minimum requirements on preloads considering the safety of joints and further systems, in case of this study, the vehicles being assembled. Also, the range of the lower and upper limits of friction coefficients of the coated fasteners affect process quality considerably in bolted joints tightened with torque and angle‐controlled technique. In this study, the effect of the friction coefficients on the bolt preload and final torque values in the vehicle chassis joints, which are created using torque and angle‐controlled tightening, were investigated experimentally. Therefore, bolt specimens which have both low and high friction coefficients, were tightened by the torque and angle‐controlled tightening method especially using high angle torque parameters on the vehicle chassis test bench. The torque and preload values obtained have been compared to each other and correlated in terms of the friction coefficients occurred.  相似文献   

17.
In this paper, the fatigue behaviour of Al 7075-T6 fastener holes with symmetrical through slits was studied. The holes were coated with electroless nickel (EN) plating with a high phosphorous content of 10–13 wt% and a thickness of 40 μm. Uncoated open-hole, EN coated open-hole, uncoated bolted hole and EN coated bolted hole specimens were fatigue tested. Bolted samples were clamped with a high tightening torque of 7 Nm. The established S–N curves showed 282–1348% improvements in the fatigue life due to the combined effect of EN coating and bolt clamping, depending on the level of maximum alternating stress. Excellent adhesion was observed between the coating and the aluminium substrate along the crack path. Tensile tests results showed a considerable reduction of 54% in the ductility of the coated material while both the yield and ultimate strengths were found to slightly increase by approximately 6% in comparison with the uncoated aluminium alloy.  相似文献   

18.
The effect of adherent thickness on the fatigue performance, fatigue limit, and failure mode of adhesively bonded thin aluminum single lap joint (SLJ) was experimentally and numerically investigated. High‐cycle fatigue tests were performed, and fatigue life was estimated using various fatigue criteria and finite element modeling. Based on the experimental results, increase in adherent thickness leads to increase in fatigue limit. In addition, failure location changes from adhesive to adherent by increasing the adherent thickness. It seems that in adherent failure, selecting a sheet with higher fatigue strength is required to achieve higher fatigue life. Also, based on the analysis of different fatigue criteria, Smith‐Watson‐Topper criterion could predict the joint fatigue life more accurately by considering the mean stress effect and the plastic strain. Finally, as an important result, an unsymmetrical SLJ specimen was evaluated as an industrial case study, and the empirical estimated life was consistent with the experimental results.  相似文献   

19.
This paper focuses on the results of process optimisation and mechanical tests that were used to ascertain the feasibility of using friction stir welding (FSW) to join stringers to skin. The effects of process parameters on weld quality of 1.5-mm 7075-T6 stringers lap-joined on 2.3-mm 2024-T3 skins were investigated. Advancing and retreating side locations on the joint configuration were alternated to determine optimal design arrangements. The effects of travel and rotation speeds on weld quality and defect generation were also investigated. Weld quality was assessed by optical microscopy and bending tests. It was found that: (i) the increase of the welding speed or the decrease of the rotational speed resulted in a reduction of the hooking size and top plate thinning but did not eliminated them, (ii) double pass welds by overlapping the advancing sides improved significantly the weld quality by overriding the hooking defect, and (iii) change of the rotational direction for a counter clockwise with a left-threaded probe eliminated the top sheet thinning defect. Subsequently, FSW lap joints were produced using optimum conditions and underwent extensive mechanical testing program. Several assembly configurations including discontinuous and continuous welds as well as single and double pass welds were produced. The results obtained for cyclic fatigue performance of FSW panels are compared with riveted lap joints of identical geometry. SN curves, bending behaviour, failure locations and defect characterisation are also discussed. It was found that: (i) the tensile strength of FSW joints approached that of the base material but with a significant reduction in the fatigue life, (ii) the probe plunge and removal locations served as the key crack nucleation sites in specimens with discontinuous welds, and (iii) double pass welds with overlapping advancing sides showed outstanding fatigue life and very good tensile properties. The present work provided some valuable insight into both the fabrication and application of FSW on stringer/skin lap joints.  相似文献   

20.
Fatigue tests of bolted joints of SAPH400 automotive steel plate were carried out. Effect of groove on fretting fatigue strength was investigated by introducing various geometries of grooves at contact edge. The fretting fatigue strength was improved by introducing groove: the fatigue strength increased with increasing groove depth. As the next step, the applicability of the tangential stress range–compressive stress range diagram to the bolted joints was investigated using the tangential stress range–compressive stress range diagram obtained from conventional laboratory-type SAPH400 steel specimens. The result showed that the fretting fatigue strength of actual component, i.e. the bolted joint could be successfully predicted based on the tangential stress range–compressive stress range diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号