首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Zr on the formation of Nb/Nb5Si3 lamellar microstructure by eutectoid decomposition reaction of Nb3Si is investigated. It has been shown that the kinetics of the eutectoid decomposition of high-temperature Nb3Si phase into Nb and Nb5Si3 phases are sluggish in the binary Nb-Si system and that they are enhanced by Zr additions. The time-temperature-transformation (TTT) diagram for the decomposition is experimentally determined and the acceleration of the reaction by small Zr addition of 1.5 at. pct is confirmed by comparison with the reported TTT curves of binary and ternary alloys containing Ti. The role of the ternary element on the decomposition kinetics is discussed in terms of crystallographic orientation relationships (ORs) and Zr distribution in the parent Nb3Si phase during solidification. This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.  相似文献   

2.
Atomic diffusion and phase equilibria have been investigated at the interfaces of Ir/CoAl and Ir/Nb5Si3 to evaluate the suitability of a diffusion-barrier layer of Ir between an oxidation-resistant layer of B2-CoAl and a base material Nb5Si3. Diffusion couples were prepared by hot pressing and annealed at 1573 K for up to 178 hours. Diffusion layers of (Ir, Co) solid solution and B2-(Ir, Co)Al were formed at the Ir/CoAl interface. The concentration of Al dramatically dropped at the interface, which indicates that the Ir layer effectively works as the diffusion barrier against the inward diffusion of Al. To quantitatively evaluate the potential of Ir as a diffusion barrier, the Boltzmann-Matano analysis was employed to determine the diffusion coefficient of Al using Ir-8 at. pct Al/Ir diffusion couples annealed at temperatures of 1573, 1673, and 1773 K. For instance, an extremely low value of 7.0×10−19 m2/s is evaluated for Ir-4 at. pct Al at 1573 K. At the Ir/Nb5Si3 interface, the intermetallic phases Ir3Si and Ir3Nb are formed on the Ir side and the Nb5Si3 side, respectively. The formation of Ir3Si is controlled by the diffusion of Si through Ir3Nb in which the solubility of Si is limited quite small. This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.  相似文献   

3.
It has been shown that a fine lamellar structure composed of Nb solid solution, (Nb), and Nb5Si3 is formed through eutectoid decomposition in the Nb-Si binary system and its ternary derivatives. Such alloys would exhibit a high strength at over 1400 K, yet showing room-temperature toughness of over 10 to 20 MPa m1/2 if a proper lamellar spacing is chosen. In the present work, effects of processing on the microstructure evolution and mechanical properties are investigated on the Nb-18 at. pct Si alloys prepared by hot pressing (HP) and spark-plasma sintering (SPS). The powders used in the present work are of pure Nb and Nb5Si3 in order for the fabrication to become possible at temperatures higher than the melting point of Si and to reduce the formation of SiO2. The results show that the SPS yields more uniform two-phase microstructure but the alloy fabricated through HP tends to provide higher elevated temperature strength. This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.  相似文献   

4.
The precipitation of Heusler phase (L21: Ni2TiAl) from a supersaturated B2 (TiNi-based) matrix at 600°C and 800°C is studied using transmission electron microscopy (TEM), analytical electron microscopy (AEM), and three-dimensional atom-probe (3DAP) microscopy in Ni-Ti-Al and Ni-Ti-Al-X (X=Hf and Zr) alloys. The B2/L21 two-phase system, with ordered structures based on the bcc lattice, is chosen for its microstructural analogy to the classical γ/γ′ system with an fcc lattice. Knowledge of the temperature-dependent partitioning of alloying elements and their atomic volumes in the B2-TiNi and L21 phases is desired to support design of high-performance shape-memory alloys (SMAs) with controlled misfit strain and transformation temperatures. After aging at 600°C for up to 2000 hours, the L21 precipitates remain fully coherent at a particle diameter of ∼20 nm. The observed effects of a misfit strain of −1.9 pct on the microstructure of the B2/L21 system are similar to those theoretically predicted and experimentally observed for the γ/γ′ system. The similarities are demonstrated in terms of the precipitate shape, spatial distribution, and minimum distance of separation between L21 precipitates. However, all these effects disappear after aging the alloys at 800°C for 1000 hours, when the L21 precipitates become semicoherent at particle diameters above ∼400 nm. A simple analysis of the size evolution of L21 precipitates after an isochronal aging (1000 hours) experiment suggests that they follow coarsening kinetics at 600°C and growth kinetics at 800°C, consistent with the Langer-Schwartz theory of precipitation kinetics, which predicts that a high supersaturation suppresses the growth regime. Microanalysis using AEM and 3DAP microscopy define the TiNi-Ni2TiAl phase boundaries at 800°C and 600°C. At 800°C, Hf and Zr partition to the B2-TiNi, while at 600°C, they partition slightly to the L21 phase, reducing the lattice misfit to −1.7 and −0.011 pct, respectively, and partition strongly to the metastable phase Ti2Ni3. To describe the composition dependence of the lattice parameter of multicomponent B2 and L21 phases, the atomic volumes of Al, Hf, Ni, Ti, and Zr in the B2-TiNi and L21 phases are determined. A simple model is proposed to predict the lattice parameters of these phases in multicomponent systems.  相似文献   

5.
The directional thermal expansion and elastic properties of Mo5Si3, (Mo0.8Nb0.2)5Si3, and (Mo0.85W0.15)5Si3 have been studied as a function of temperature through the use of single crystals. Thermal expansion anisotropy was reduced by Nb and W alloying. The decrease in thermal expansion anisotropy by Nb alloying was only found to occur at low temperatures, and thermal expansion anisotropy of (Mo0.8Nb0.2)5Si3 was similar to that for the other two compounds at 800 °C. Values for the polycrystalline Young’s, bulk, and shear moduli calculated from the measured single-crystal elastic constants are reduced by Nb alloying, and increased by W alloying at all temperatures studied. The elastic modulus E was calculated for the orientations between [100]-[001] and [100]-[010]. In contrast to the effects of Nb on thermal expansion anisotropy, Nb alloying increased the E [001]/E [100] elastic anisotropy. This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.  相似文献   

6.
The metastable L12-Al3Zr phase has been obtained as a solidification product on melt-spinning ternary Al-X-Zr (X = Cu, Ni) alloys. Different non-equilibrium effects of the metastable Al3Zr phase (L12) have been observed in the as-solidified and heat-treated alloys. The solidification sequence begins with the formation of the L12-Al3Zr (cubic) phase as a primary phase, followed by heterogeneous nucleation of α-Al. Morphological changes in the primary phase result in a shape transformation from a faceted cube to one with concave interfaces and protrusions along the corners, having a preferential growth along the 〈111〉 direction. This is brought about by a kinetic effect taking place during the growth of the L12-Al3Zr phase into the surrounding liquid, as the alloy is quenched. In another instance, the primary L12-Al3Zr phase nucleates as solid-state precipitates of the same L12-Al3Zr phase on annealing, by dissolution and reprecipitation of solute, under the influence of moving grain boundaries. A third case shows the metastable L12 phase nucleating on the equilibrium DO23-Al3Zr phase, upon solidification. This is attributed to the sluggish growth kinetics of the latter.  相似文献   

7.
Mo(Si,Al)2-base oxidation-resistant coatings for Nb-base structural materials have been studied. The coating is composed of a Mo(Si,Al)2-base Al reservoir and Al2O3 interlayer to suppress interface reactions between the Al reservoir and the substrate. To develop a suitable Al-reservoir material, some Mo(Si0.6,Al0.4)2-HfB2 composites were prepared. Their oxidation resistance and coefficients of thermal expansion were investigated, in addition to their chemical reactivity with the Nb substrate at high temperatures. As a result, Mo(Si0.6,Al0.4)2-20 vol pct HfB2 was selected as one of the satisfactory Al reservoirs. The introduction of a stable Al2O3 interlayer was attempted using a novel powder metallurgical process to overlay the Nb substrates with the Al reservoir, where the Nb substrates were subjected to a slight surface oxidation prior to the coating process. The Nb specimens, which are thoroughly coated with the Al reservoir and Al2O3 interlayer, can be successfully fabricated by this method. The coated Nb specimens are not damaged at all after prolonged exposure in flowing Ar-20 pct O2 at 1673 K for 120 hours. Furthermore, the Al2O3 interlayer is very effective and no reactions occur at the interface. Thus, this Mo(Si,Al)2-base oxidation-resistant coating is applicable to Nb. The utility of the coating system is also confirmed for a NbSS/Nb5Si3 composite. This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.  相似文献   

8.
TiB2 reinforced in-situ titanium aluminide matrix composite was made through reaction synthesis process using high purity elemental powders of Ti, Al, Cr, Nb and B. XRD of the synthesized block showed presence of mainly Al3Ti and TiB2 phases. To obtain γ Ti aluminide based matrix, the material was homogenized in two phase region (α2+γ). Presence of γ phase matrix alongwith α2 was confirmed through XRD, SEM and TEM. Uniform distribution of TiB2 phase was confirmed through elemental mapping and by analyzing specimens of different locations. Differential scanning calorimetry of powder mixture showed presence of endothermic peak for Al melting and exothermic peak of Ti aluminide and TiB2 formation.  相似文献   

9.
The characteristics of the B2(β) to L10(β′) martensitic transformation in NiAl base alloys containing a small amount of third elements have been investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is found that in addition to the normal Ll0 (3R) martensite, the 7R martensite is also present in the ternary alloys containing Ti, Mo, Ag, Ta, or Zr. While the addition of third elements X (X: Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ta, W, and Si) to the binary Ni64Al36 alloy stabilizes the parentβ phase, thereby lowering the Ms temperature, addition of third elements such as Co, Cu, or Ag destabilizes theβ phase, increasing the Ms temperature. The occurrence of the 7R martensite structure is attributed to solid solution hardening arising from the difference in atomic size between Ni and Al and the third elements added. The variation in Ms temperature with third element additions is primarily ascribed to the difference in lattice stabilities of the bcc and fcc phases of the alloying elements.  相似文献   

10.
The grain-boundary character distribution (GBCD) of cold-rolled and, subsequently, recrystallized Co3Ti and Ni3(Si,Ti) ordered alloys with an L12 structure was studied by the electron backscattered diffraction (EBSD) method, in association with texture. For comparison, the GBCD of recrystallized pure copper and aluminum was also determined. The recrystallization textures of the Co3Ti alloys as well as the Ni3(Si,Ti) alloy were significantly weak and different from those of the pure copper and aluminum with a strong cube texture. The GBCD of the Co3Ti alloys was characterized by a high frequency of Σ3 boundaries. On the other hand, the GBCD of the Ni3(Si,Ti) alloy was characterized by a lower frequency of Σ3 and higher frequency of random (e.g., Σ>29) boundaries than that of the Co3Ti alloys. However, the GBCDs of the Co3Ti and Ni3(Si,Ti) alloys were similar to each other and also quite similar to those of the pure copper and aluminum, when Σ3 boundaries are excluded from the GBCD. Based on these results, the formation mechanism responsible for the recrystallization textures and the grain-boundary structure and energy of the Co3Ti and Ni3(Si,Ti) alloys were discussed, in comparison with those of pure copper and aluminum.  相似文献   

11.
We present the results of investigations of synthesis in a burning mode of tissue-compatible compact composition materials of tantalum-containing target cathodes (Ti, Ta)Cx + Ca3(PO4)2 obtained by forced SHS compaction from a Ti + Ta + C + Ca3(PO4)2 mixture and assigned to the ion-plasma deposition of nanostructured tissue-compatible coatings. The effect of the amount of additives of the tantalum-carbon mixture with respect to the weight of the starting charge is investigated. Regularities of phase formation and structural formation in synthetic products are analyzed. A new and important feature is that there is no dependence of the burning velocity and temperature on the relative fraction of the Ta + C mixture. In the temperature profiles, two characteristic peaks of heat release were detected. These peaks indicate that parallel and sequential chemical reactions of the formation of titanium and tantalum carbides proceed. The growth of the relative fraction of the Ta + C mixture led to modification of the carbide structure, to an increase in the residual porosity, and to a considerable increase in hardness.  相似文献   

12.
Fatigue crack propagation (FCP) has been studied in a new class of materials termed metal-intermetallic laminate (MIL) composites (Ti-Al3Ti). Due to ease of fabrication and control over layer makeup, these MIL composites can be tailored to optimize the constituent properties for structural and higher performance aerospace applications. Effects of ductile reinforcement (titanium alloy) type, thickness, and volume fraction were systematically investigated in both arrester and divider orientations. Stress intensity (K max) values as large as 40 MPa√m were observed in the higher crack growth regime, indicating that the fracture toughness of the MIL composites is comparable to common structural metals. In both divider and arrester orientations, the overall fatigue crack growth rate showed an improvement with increasing Ti volume fraction and with increasing Ti thickness (at constant ductile-phase volume fraction). It is noted that the fatigue resistance of monolithic Al3Ti was improved by an order of magnitude by incorporating just 20 vol pct ductile Ti. In the divider orientation, toughening is obtained through plastically stretching the intact ductile Ti ligaments that bridge the crack wake, thus reducing the crack driving force. By virtue of its morphology, the arrester orientation provides toughening by trapping the crack front entirely at the metallic-intermetallic interfaces, thus requiring the crack to renucleate at each interface. Results are compared with specific crack growth rates of conventional monolithic alloys and other composite systems such as TiNb/γ-TiAl and Nb/Nb3Al. Owing to their low density (∼3.8 g/cc), Ti-Al MIL composites exhibited specific crack growth rates (da/dN vs ΔK/ρ) on par with tougher, but relatively denser, ductile metals such as Ti alloys and high-strength steels.  相似文献   

13.
Quaternary additions of 2 at. pct of Ta or Zr were made to the ternary Ti-44Al-xNb (X=9 and 11) alloys to study the oxidation behavior at 900 °C, 950 °C, and 1000 °C for a period of 1 week. The Ta addition improves the oxidation resistance, while it is degraded by Zr compared to the ternary alloys. Identification of the oxides formed in the scale has been characterized by energy-dispersive atomic X-ray (EDAX) in a scanning electron microscope (SEM). The transmission electron microscope (TEM) analysis of the microstructures developed during oxidation has been compared with Ti-44Al-xNb alloys in order to determine the influence of quaternary additions of Ta and Zr on the phase transformations taking place during the extended period of heating. The formation of spotty α 2 in the isolated γ grains appears to be associated with the inferior oxidation resistance of xNb2Zr alloys. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   

14.
Ir-base refractory superalloys for ultra-high temperatures   总被引:1,自引:0,他引:1  
The microstructure and compression strengths of Ir-15 at. pct X (X=Ti, Ta, Nb, Hf, Zr, or V) binary alloys at temperatures between room temperature and 1800 °C were investigated to evaluate the potential of these alloys for ultra-high-temperature use. The fcc and L12 two-phase structures of these alloys were examined by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The strengths of the Ir-Ta, -Nb, -Hf, and -Zr alloys were above 800 MPa at temperatures up to 1200 °C and about 200 MPa at 1800 °C. The strengths of these alloys under 1000 °C are equivalent to or higher than those of the commercially used Ni-base superalloys, MAR-M247 and CMSX-10. The Nb concentration dependence of strength was investigated using a series of Ir-Nb alloys with Nb concentrations from 0 to 25 at. pct. It was found that the Ir-base alloys were strengthened by L12 precipitation hardening. The potential of the Ir-base alloys for ultra-high temperature use is discussed.  相似文献   

15.
Zinc ferrite and strontium hexaferrite; SrFe12O19/ZnFe2O4 (SrFe11.6Zn0.4O19) nanoparticles having super paramagnetic nature were synthesized by simultaneous co-precipitation of iron, zinc and strontium chloride salts using 5 M sodium hydroxide solution. The resulting precursors were heat treated (HT) at 850, 950 and 1150°C for 4 h in nitrogen atmosphere. The hysteresis loops showed an increase in saturation magnetization from 1.040 to 58.938 emu/g with increasing HT temperatures. The ‘as-synthesized’ particles have size in the range of 20–25 nm with spherical and needle shapes. Further, these spherical and needle shaped nanoparticles tend to change their morphology to hexagonal plate shape with increase in HT temperatures. The effect of such a systematic morphological transformation of nanoparticles on dielectric (complex permittivity and permeability) and microwave absorption properties were estimated in X band (8.2–12.2 GHz). The maximum reflection loss of the composite reaches −26.51 dB (more than 99% power attenuation) at 10.636 GHz which suits its application in RADAR absorbing materials.  相似文献   

16.
The devitrification of Mg65Cu25Tb10 bulk metallic glass (BMG) has been studied by time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) simultaneously. By analyzing the interference peaks on SAXS patterns and the Bragg peaks on WAXS patterns, it is found that devitrification initiates by activation of quenched-in short-range orders. Crystallization proceeds in three stages. During stage I, icosahedral clusters are formed that transforms to a quasi-crystalline 1/1 approximant during stage II, accompanied by the formation of cubic TbMg3. In stage III, the 1/1 approximant transforms to a 2/1 approximant. The orthorhombic CuMg2 phase is formed at a higher temperature when the quasi-crystalline phase starts to decompose. Pair distribution functions were evaluated to demonstrate these structural evolutions in real space. This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007 during the TMS Annual Meeting in Orlando, Florida under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.  相似文献   

17.
The alloying (substitution) behavior of Ll2-type Co3Ti({fx1433-01}) compound was investigated at an isothermal section of 1323 K by the observation of the direction of solubility lobe of Ll2 phase. The solubility lobes of additions of V, Ta, Cr, W, and Al indicated that they substitute for Ti site, those of Ni and Cu for Co site, and that of Fe for both sites. However, the preferable substitution natures for additions of Zr, Hf, Nb, Mn, and Si, and of Mo and Ge were not determined because of the small solubility limit, and because of no preferable solubility lobe, respectively. The substitution behavior and solubility limit obtained in the ternary Co3Ti compound were evaluated with the thermo-dynamic concept. The Research Institute for Iron, Steel and Other Metals The Research Institute for Iron, Steel and Other Metals  相似文献   

18.
An Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass with a diameter of 5 mm was prepared with the copper-mold-casting method. The corrosion resistance of this amorphous steel in sulfuric-acid solutions was determined by electrochemical measurements. The passive film formed on the surface of the alloy after immersion in the 0.5-mol/l H2SO4 solution for 1 week was analyzed by X-ray photoelectron spectroscopy (XPS). Electrochemical measurements show that the corrosion resistance of the amorphous steel in the 1 mol/l-H2SO4 solution is superior to a stainless steel (SUS 321), and is almost the same as Ti6Al4V, which shows that the amorphous steel has an excellent corrosion resistance in sulfuric-acid solutions. As the concentration of the sulfuric-acid solutions increases from 0.5 mol/l to 4 mol/l, the corrosion resistance of the amorphous steel decreases. The XPS result reveals that a bilayer structure of protective film formed on the surface of the amorphous steel in a H2SO4 solution. The compositions of the inner part of the film are MoO2, Cr2O3, CoO, and FeO, and those of the outer film are MoO3, Cr(OH)3, Co(OH)2, and Fe(OH)3.  相似文献   

19.
Amorphous Ti50Cu28Ni15Sn7 alloy powders were synthesized by a mechanical alloying (MA) technique. Differential scanning calorimetry (DSC) results showed that, after 7 hours of exposure to the milling process, amorphous Ti50Cu28Ni15Sn7 alloy powders exhibit a wide supercooled liquid region of 61 K. Consolidation of amorphous powders were performed at a temperature slightly higher than the glass transition temperature under a pressure of ∼1.2 GPa, and bulk metallic glass (BMG) discs can be prepared successfully. However, we noticed partial crystallization during the hot pressing process and were not able to achieve full densification of BMG. The Vickers microhardness of Ti50Cu28Ni15Sn7 BMG was 634 kg/mm2, and the trace of the indentation revealed that pre-existing particle boundaries or interfaces between nanocrystals and amorphous matrix may serve as the crack initiation sites. Thus, typical brittle failure of Ti50Cu28Ni15Sn7 BMG was observed and resulted in relatively low fracture stress compared to that estimated by the microhardness. This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007 during the TMS Annual Meeting in Orlando, Florida under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.  相似文献   

20.
Solidification microstructure of multicomponent (Zr,Ti)-Ni-(V,Cr,Mn,Co) alloys intended for use as negative electrodes in Ni-metal hydride (Ni-MH) batteries was studied in Part I of this series of articles. Part II of the series examines the complex internal structure of the interdendritic grains formed by solid-state transformation and believed to play an important role in the electrochemical charge/discharge characteristics of the overall alloy composition. By studying one alloy, Zr21Ti12.5V10Cr5.5Mn5.1Co5.0Ni40.2Al0.5Sn0.3, it is shown that the interdendritic grains solidify as a B2 (Ti,Zr)44(Ni,TM)56 phase, and then undergo transformation to Zr7Ni10-type, Zr9Ni11-type, and martensitic phases. The transformations obey orientation relationships between the high-temperature B2 phase and the low-temperature Zr-Ni–type intermetallics, and consequently lead to a multivariant structure. The major orientation relationship for the orthorhombic Zr7Ni10 type is [011]Zr7Ni10//[001]B2; (100)Zr7Ni10//(100)B2. The orientation relationship for the tetragonal Zr9Ni11 type is [001]Zr9Ni11//[001]B2; (130)Zr9Ni11//(100)B2. Binary Ni-Zr and ternary Ti-Ni-Zr phase diagrams were used to rationalize the formation of the observed domain structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号