首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
结合现场情况介绍了热轧带钢层流冷却设备和控制系统的数学模型,其中数学模型主要包括空冷模型、水冷模型、反馈控制模型和自学习模型.由于某热轧厂采用非匀速轧制工艺制度,带钢在冷却区内既有较大升速又有较大降速,原层流冷却系统不能够适应轧制速度的变化而影响卷取温度控制精度,故需针对轧制速度的变化进行速度前馈补偿控制;从过程自动化和基础自动化两个方面对速度前馈补偿控制进行了优化.实际应用表明,优化后系统运行稳定可靠,控制精度高,显著提高了产品的性能,并为新钢种的开发奠定了基础.  相似文献   

2.
带钢冷连轧控制是系统性极强、技术难度极大、精度要求极高的综合性技术,是保证冷轧带钢产品质量和生产效率的主要手段。东北大学自主开发了冷连轧全套自动化系统,涵盖了轧机主令控制、自动厚度控制、自动板形控制、物流跟踪、模型设定等功能,并研发了高精度数学模型、轧制规程多目标优化算法、加减速过程带钢厚度与张力补偿及轧制工艺优化等先进控制技术。所开发的系统已推广应用到多条冷连轧生产线中,现场应用表明,系统运行稳定,实现了0.17 mm极薄规格带钢高速稳定轧制,厚度偏差小于±2.5μm,板形标准差小于7 I。最后对轧制过程的智能化发展进行了展望。  相似文献   

3.
带钢冷连轧控制是系统性极强、技术难度极大、精度要求极高的综合性技术,是保证冷轧带钢产品质量和生产效率的主要手段。东北大学自主开发了冷连轧全套自动化系统,涵盖了轧机主令控制、自动厚度控制、自动板形控制、物流跟踪、模型设定等功能,并研发了高精度数学模型、轧制规程多目标优化算法、加减速过程带钢厚度与张力补偿及轧制工艺优化等先进控制技术。所开发的系统已推广应用到多条冷连轧生产线中,现场应用表明,系统运行稳定,实现了0. 17mm极薄规格带钢高速稳定轧制,厚度偏差小于±2. 5μm,板形标准差小于7I。最后对轧制过程的智能化发展进行了展望。  相似文献   

4.
层流冷却控制系统是带钢热连轧计算机系统控制的重要组成部分.以泰钢热轧不锈钢层流冷却系统为背景,结合现有技术和经验,设计实现适合现场生产需求的层流冷却控制系统.从过程自动化方面介绍了该系统的控制思想和实现方式,通过优化控制参数,采用先进的数学模型和控制技术,实现对层流冷却系统的二级控制,提高卷取温度控制精度,达到卷取温度...  相似文献   

5.
为了提高冷轧带钢产品质量,东北大学轧制技术及连轧自动化国家重点实验室自主开发了成套的单机架冷轧机自动化系统,主要包括轧机主令控制、液压伺服控制、自动厚度控制、自动板形控制、钢卷跟踪、数据采集、模型设定等功能,并研发了高精度的数学模型、基于成本函数的轧制规程多目标优化、加减速过程的高精度张力控制策略、加减速过程带钢厚度补偿策略及轧制工艺优化等先进控制技术。所开发的自动化控制系统已推广应用到多条单机架冷轧机生产线中,现场应用表明:所开发的控制系统运行稳定,轧制规程设定合理,模型预报精度高;在轧制0.18mm极薄规格带钢时,稳速轧制的厚度偏差可控制在±2μm以内,产品成材率和产品质量大幅度提高。  相似文献   

6.
带钢速度控制是冷轧处理线关键技术之一。本文从数学模型角度,分别介绍了其核心的带钢速度设定模型和带钢定位控制模型,并进一步描述了模型中各个控制环节的基本原理和计算公式。生产实践表明,该模型成功实现了成组传动的协同运行,保证了冷轧处理线的稳定高效生产。  相似文献   

7.
赵会平  潘刚 《宝钢技术》2009,(4):63-66,70
带钢前滑是冷连轧数学模型系统对过程控制的重要设定参数之一,其精度直接影响着冷轧产品在轧制过程中的成材率和质量稳定性。从前滑模型的理论入手,推导了宝钢现有冷连轧数学模型系统中前滑模型的结构和计算方式,结合其特点对前滑模型在现场的应用和动态控制方面进行了优化,实现了冷轧数学模型在控制过程中的计算稳定性和准确性。  相似文献   

8.
酒钢镀锌生产线使用立式连续退火炉对带钢进行退火处理,并采用退火炉带钢温度控制模型对带钢的退火温度进行精确控制。本文详细描述酒钢镀锌生产线退火炉带钢温度控制模型的基本原理、数学模型的建立方法、相关系统的调试与分析,并给出了模型控制的稳态输出结果。为酒钢热镀锌新产品的开发提供了可依据的参考。  相似文献   

9.
介绍了承钢中宽带钢生产线精轧机组自动化系统改造的应用实例。在改造中,对影响产品质量较大的活套控制与压下控制做了功能性改进,特别是压下系统,在硬件设备较为落后的情况下,利用软件精确的数学模型进行位置闭环控制,弥补了硬件的不足,满足了生产工艺对活套系统的稳定控制与压下系统的精度要求。  相似文献   

10.
热轧带钢轧后冷却过程中卷取温度的控制精度是保证带钢组织性能、表面质量和板形良好的1个关键因素。温度控制的核心是冷却过程控制模型的建立及其自适应反馈功能。建立了具有非线性结构特征的热轧带钢冷却过程控制的数学模型,并对新模型的智能反馈控制方法进行了研究,增强了控制模型的自适应性。现场实际应用表明:实测卷取温度与目标温度相差...  相似文献   

11.
热轧带钢层流冷却计算机控制系统   总被引:3,自引:0,他引:3  
彭良贵  佘广夫  李国强  刘相华  王国栋 《钢铁》2005,40(11):46-48,79
从基础自动化、系统服务、过程自动化3个方面介绍了攀钢热轧带钢厂层流冷却计算机控制系统的设计,着重介绍了过程自动化中的样本微跟踪和一种改进的层冷热流密度参数回归求解方法以及系统模型调优。实际运行结果表明,国内自主开发的热轧带钢层流冷却计算机控制系统完全达到并超过了设计要求,具有较高的卷取温度控制精度。  相似文献   

12.
层流冷却是控制带钢卷取温度的最重要手段。为了满足宁波钢铁有限公司1 780 mm热连轧机薄板生产线层流冷却工艺的控制要求,采用了由基础自动化控制系统和过程控制系统组成的两级计算机控制系统。介绍了层流冷却系统设备及自动控制系统结构。重点阐述了层流冷却基础自动化系统主要功能,包括层流冷却区域内带钢微跟踪、步序控制、卷取温度反馈控制以及速度前馈控制。运行结果表明,系统控制精度、响应速度均满足工艺要求。自系统投入运行以来,工作稳定,控制效果较好。  相似文献   

13.
王芳  吴召明 《山东冶金》2011,33(2):62-63,66
为了提高莱钢1500mm热连轧卷取温度的控制精度,对原基础自动化控制系统进行改造,增加了带Smith预估器的反馈控制和轧机抛钢后的冷却水前馈控制;同时增加了过程自动化控制系统,包括预设定计算、修正设定计算和自学习计算模块。系统改造后,带钢卷取温度控制不稳定的现象基本消除,实现了带钢的冷却模式、卷取温度和冷却速率的精确控制,提高了带钢的质量。  相似文献   

14.
为提高热轧带钢层流冷却卷取目标温度的控制精度,根据冷却过程的传热机理,分析了带钢层流冷却的传热过程.在此基础上,给出了冷却控制的空冷和水冷预测数学模型,分析并阐述了层流冷却控制系统的前馈控制算法及其在实际控制中的应用.本前馈控制的使用效果良好,具有较高的目标卷取温度控制精度,能满足生产的需要.  相似文献   

15.
卷取温度是影响带钢组织性能的重要工艺参数.在生产实践中,如何提高厚规格带钢卷取温度的控制精度是一个难点.针对厚规格带钢在层流冷却过程中的工况特点,提出了温度场计算模型和对流换热系数模型的改进方法,并开发了一种全新的基于相似策略的自适应模型,以改善卷取温度前馈控制效果.经现场应用证明,本文提出的方案能有效提高厚规格带钢的卷取温度控制精度,其中厚度大于12 mm的带钢平均命中率可达到94.9%.   相似文献   

16.
杨滋  闻成才 《中国冶金》2017,27(4):41-47
热轧带钢卷取温度是影响带钢力学性能和板形质量的重要因素,其控制精度对产品质量以及新产品开发都有重要影响。以马钢2250HSM层流冷却控制系统为研究对象,针对原控制系统卷取温度整体命中率较差,头部穿带和尾部抛钢时升降速导致温度控制异常等问题,通过应用新的控制模型、优化模型参数和改进控制功能等方法对现有的控制系统进行了升级改造。实践结果证明,改造优化后的冷却温度控制系统控制精度大幅提高,取得了较好的控制效果。  相似文献   

17.
叶盛 《冶金自动化》2007,31(6):60-62
卷取温度(CT)精度是冷却过程控制的核心,而卷取带钢速度是作为热轧带钢CT控制的重要参数。结合某热轧厂CT控制系统的改造,提出了一种卷取带钢速度测量系统。该系统能精确测量卷取带钢的速度,为提高带钢尾部CT的控制精度提供有力保证。  相似文献   

18.
热连轧层流冷却系统的控制模型及控制策略   总被引:6,自引:1,他引:6  
主要介绍了热轧带钢层冷系统中的控制模型及控制策略,包括液位控制、目标卷取温度的前馈控制和带有Smith预估器反馈控制等。其中通过液位控制可以得到稳定的液位,这对保持集管流量的稳定和上位机预设定的精度都是非常重要的。卷取温度的前馈控制和反馈控制对卷取温度控制精度的提高是必不可少的手段。这些控制模型和控制策略已经在工厂中得到应用,并且取得了很好的控制效果,说明这些控制模型和控制策略可以广泛应用于热连轧厂的冷却系统中。  相似文献   

19.
以面向对象的视角审视热轧带钢轧后冷却过程涉及的轧件、辊道、集管、冷却介质与仪表5要素,对轧件在辊道的传热过程、冷却水量和温度的控制过程进行分析、分解并抽象成类。利用面向对象的方法对卷取温度控制(coiling trmperature control,简称CTC)模型的体系结构进行设计,结合模型的触发逻辑进行对象设计,利用C++语言开发面向对象的卷取温度模型。基于有限差分计算方法的模型设定时间满足在线快速计算的要求,模型具有良好的可移植性和可扩展性。现场应用表明,冷却控制系统运行稳定,模型设定准确,卷取温度控制效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号