首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Hydrochory, seed dispersal by water, affects riparian vegetation by contributing to downstream community composition and diversity. However, dams can block hydrochory, reducing downstream species diversity and fragmenting riparian corridors. Dam removal is becoming more prevalent for economic and ecological reasons and is expected to restore hydrochory; however, this has never been documented in rivers. The largest dam removal project to date was the 2011 to 2014 removal of the Glines Canyon and Elwha dams on the Elwha River in Washington. Prior to dam removal, hydrochory was lower below Glines Canyon Dam compared with an upstream reach; our objective was to test the hypothesis that dam removal would restore downstream hydrochory to levels observed in the upstream reach. To test this, we collected seeds in nets above and below the dam during three sample periods (early July, late July and early August), growing out seeds in a greenhouse and comparing seed abundance and species richness above and below dams, before and after dam removal. We found that after dam removal, the average number of hydrochorous seeds and species increased below Glines Canyon Dam to levels similar to or higher than that of the upstream reach; hydrochory levels in the upstream reach did not change. This study is the first to document the restoration of hydrochory in rivers following removal of a large dam. Restoration of hydrochory may ultimately increase downstream vegetation diversity and play a role in the recolonization of reservoir sediments deposited in the riparian zone in the years following dam removal. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
    
Dam removal is potentially a powerful tool for river and riparian restoration. However, long‐term studies on the fate of former reservoirs do not exist, limiting assessment of the utility of dam removal as a means of riparian restoration. We took advantage of the decades‐long legacy of dam removals in Wisconsin to determine human uses of drained reservoirs and to evaluate vegetation establishment and species replacement at these sites. More than half of the 30 dam removal sites in southern Wisconsin over the past 47 years were used as commercial areas, parks and agricultural land, and active riparian restoration occurred on only two sites. For the 13 sites that were allowed to revegetate on their own, plants established in the first growing season and cover was very high at all sites in 2001. Species diversity and frequency (defined as percentage of sampled quadrats where a species is present) of trees were positively correlated with time since removal. No relationship existed between site age and frequencies of other growth forms, nor were there significant relationships between site age and the number or frequency of introduced species. However, mean frequency of introduced species was 75% per site and several sites were dominated by the introduced grass Phalaris arundinacea. Frequency of P. arundinacea was negatively correlated with number of native forbs, and lowest species diversity occurred on sites dominated by P. arundinacea. Ordination analyses revealed substantial site‐to‐site variation in vegetation that was weakly associated with gradients of site location, age, area, and soil phosphorus. Thus, temporal vegetation dynamics following dam removal were site‐specific. Rapid revegetation demonstrates the potential of these sites for riparian restoration. However, if dam removal is used as a means of restoring native riparian communities, then approaches must be tailored to individual sites and will need to focus on techniques to minimize establishment of aggressive invading species. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
    
Most of the United States' 2.5 million dams are not under the jurisdiction of any public agency. These small (under 6 ft [1.83 m] tall) nonjurisdictional dams, unregulated and not inventoried anywhere, endanger public safety and degrade riparian ecosystems. Their problems are increasing as structures age and storm events become more violent. Property owners can be held liable for problems at dams. Through several policy changes and legal actions, states can vastly improve the situation. States should consider expanded jurisdiction over small dams, a program of inventorying and mapping all dams in state waterways, owner education and outreach, and shared resources to allow for improved public safety and river restoration through best dam management or dam removal practices. This article is categorized under:
  • Human Water > Water Governance
  • Engineering Water > Planning Water
  • Water and Life > Stresses and Pressures on Ecosystems
  相似文献   

4.
    
Dam removal can restore fish passage, natural flow regimes, sediment transport in streams, dispersal of organic matter, and drift of aquatic insects. However, dam removal also impacts the riparian vegetation, with both immediate and delayed responses. In this study, we measure vegetation change at the Merrimack Village Dam site on the Souhegan River in Merrimack, NH, USA. The August 2008 removal caused a ~3‐m drop in water level and rapid erosion of impounded sediment, with ~50% removed in the first 3 months. Terrace, floodplain, and wetland communities were surveyed in summer 2007, 2009, 2014, and 2015. Temporal change was quantified using Analysis of Similarity on the Bray–Curtis dissimilarity matrix. Only herbaceous vegetation closest to the river channel and in the off‐channel wetland changed significantly. The herbaceous plots directly adjacent to the impoundment eroded to bare sand in 2009, but by 2014, the original riparian fringe community had re‐established in the newly developed floodplain. Between 2007 and 2014, the off‐channel wetland area changed from aquatic species to a stable terrestrial community that persisted without significant change in 2015. The vegetation response was greatest in areas with the largest geomorphic and hydrologic change. These included the channel margin where erosion and bank slumping created an unstable scarp. The mid‐channel island and off‐channel wetland were strongly affected by the lowered water table. However, large unvegetated areas never persisted nor did the areal coverage of invasive species expand, which are two frequent concerns of dam removal stakeholders.  相似文献   

5.
    
A visual framework to display complex river restoration monitoring plans is proposed. The framework provides for four dimensions of information—spatial coverage, and the frequency, density and type of measurement to be evaluated—in a concise and transparent fashion. It is not only useful as a display and communication tool but also facilitates identification of overlaps, gaps and inefficiencies. The visual framework is particularly useful for coordinating multiple monitoring efforts and for communicating or negotiating modifications. An example application of the framework is presented using the multi‐year monitoring effort surrounding the removal of the Marmot Dam from the Sandy River, OR. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
    
Dam removal to restore ecologically impaired rivers is becoming increasingly common. Although the target often is to facilitate fish migration, dam removal has also been assumed to benefit other types of organisms. Because few studies thus far deal with effects of dam removal on stream macroinvertebrates and because results have been equivocal, we investigated both short‐ and longer‐term dam‐removal effects on downstream macroinvertebrate communities. We did this in a before‐and‐after study of the removal of a dam located in a south Swedish stream. We sampled the benthic fauna 6 months before dam removal and both 6 months and 3.5 years after the dam was removed. We compared species composition, taxonomic richness, total densities and densities of macroinvertebrate groups before and after dam removal and between downstream and reference sites. We found that dam removal reduced some macroinvertebrate taxa at the downstream site, but we found no effect on community composition. Although this corroborates results from previous short‐term studies, we also found a reduction of taxonomic richness and that some dam‐removal effects persisted or even increased over time. The most likely explanation for the suppression of benthic macroinvertebrate richness following dam removal is a significantly increased sediment transport from the former reservoir and a subsequent loss of preferred substrates. Our results indicate that adverse dam‐removal effects may be long lasting but taxon specific. We therefore call for longer‐term studies on a variety of organisms to better understand how dam removal may influence downstream macroinvertebrate communities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
    
Stream habitat restoration is an important tool for fisheries management in impaired lotic systems. Although small‐scale benefits of stream habitat restoration are commonly investigated, it is difficult to demonstrate population effects. The Pahsimeroi River Chinook salmon Oncorhynchus tshawytscha population was previously restricted to the lower portion of the river by multiple irrigation structures. To address fish passage issues, a combination of restoration projects was initiated including barrier removals, instream flow enhancements and installation of fish screens on diversions. The largest barrier was removed in 2009, more than doubling the amount of accessible linear habitat. We hypothesized restoration efforts would expand the distribution of spawning salmon in the Pahsimeroi River watershed, leading to a broader distribution of juveniles. We also hypothesized a broader juvenile distribution would have population effects by reducing the prevalence of density‐dependent growth and survival. Redds were documented in newly accessible habitat immediately following barrier removal and accounted for a median of 42% of all redds in the Pahsimeroi River watershed during 2009–2015. Snorkel surveys also documented juvenile rearing in newly accessible habitat. Juvenile productivity increased from a median of 64 smolts/female spawner for brood years 2002–2008 to 99 smolts/female spawner for brood years 2009–2014. Overall, results suggested increased habitat accessibility in the Pahsimeroi River broadened the distribution of spawning adult and rearing juvenile salmon and reduced the effects of density‐dependent survival. Large‐scale stream restoration efforts can have a population effect. Despite the large‐scale effort and response, habitat restoration alone is likely not sufficient to restore this population.  相似文献   

8.
    
Recolonization of Pacific lampreys Entosphenus tridentatus into historically used freshwater habitats in the United States Pacific Northwest was evaluated in the White Salmon River basin after removal of Condit Dam. Pacific lamprey population declines are of concern, and passage barrier removal is often recommended for conservation. Condit Dam on the White Salmon River in Washington was a complete barrier to fish migrating upstream for nearly 100 years, was breached in 2011, and was removed by 2012. Distribution of larval Pacific lampreys was estimated before and after removal of Condit Dam using either backpack or deepwater electrofishing. Larval detection probabilities were calculated for the basin, and sample efforts were refined to ensure at least 80% confidence that larvae were absent when not detected. Pacific lampreys were not present upstream of Condit Dam before it was removed but were present in areas downstream of the dam. After dam removal, Pacific lamprey larvae were collected upstream of the former dam site from four reaches of the mainstem White Salmon River, indicating a recent recolonization event. Pacific lampreys were absent from the river mouth area before the dam was removed but were found in newly created habitat at the mouth after dam removal. Pacific lampreys naturally recolonized the White Salmon River basin within a few years after dam removal. Removing dams and providing passage opportunity can allow Pacific lampreys to distribute into vacant areas and may help reverse population declines.  相似文献   

9.
    
Many dams in the USA have outlived their intended purpose and an increasing number are being considered for removal. Yet, quantitative studies of the potential physical, biological and ecological responses are needed to assess dam removal decisions. In this paper, the responses of migratory walleye (Sander vitreus) to increased spawning habitat availability as a result of dam removal was studied by comparing scenarios with and without a high‐head dam in the Sandusky River (Ohio), a major tributary to Lake Erie. A conceptual, ecological model was proposed to define the relationship between hydrodynamics and walleye spawning, egg hatching, larval drift and survival. A mathematical, ecological model of the early life‐history stages was then developed and coupled with time series of depth and velocity predictions over the spawning grounds from a 1‐D hydrodynamic model. Model simulations were run for 1984–1993 for both the with‐ and without‐dam scenarios to assess the potential benefit of dam removal. The simulation results demonstrated that velocity, depth and water temperature are major factors influencing adult walleye spawning success. Without the dam, 10 times the amount of spawning habitat would be available for walleye to spawn. This increase in spawning habitat area resulted in up to five times the total egg deposition and seven times the larval output to the nursing grounds, based on the assumption that 5% of the walleye population of Lake Erie migrated up the Sandusky River to spawn. We concluded that the spawning habitat in the current condition (with the dam) is limiting and additional spawning habitat upstream could significantly increase the number of larval walleye drifting to Lake Erie. The model sensitivity analysis showed that the number of walleye migrating up the river in spring is the dominant factor for larval recruitment to the lake. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
    
Quantifying change after large habitat restoration efforts is critical to assessing the effort's success. After river restoration activities, fish abundance is expected to increase and also fluctuates naturally by season and with environmental conditions. A side‐looking hydroacoustic system was used to estimate fish abundance in the Penobscot River, ME, from 2010 to 2016 during predam (2010–2013) and postdam (2014–2016) removal years during nonice periods. Automated data processing enabled continuous abundance estimates from fish tracks. A threefold increase in mean fish abundance was recorded after dam removal. A fourfold increase in median fish abundance occurred in the fall relative to spring and summer of the same year, regardless of dam presence. Interannual fish abundance in every season monitored increased at least twofold after dam removal. We related variability in fish abundance to tide, discharge, temperature, diurnal cycle, daylength, moon phase, and restoration activities (focusing on dam presence). Daylength corresponding to the fall and summer was the most important indicator for higher fish abundance. Fish abundance was generally greatest in the fall during outgoing tides at night, with lesser peaks occurring during the month of June at night. Before dam removal, fish abundance peaked when water temperature was less than 9.25°C, at night, during outgoing tides. After dam removal, fish abundance peaked when daylength was less than 11.3 hr, at night, during outgoing tides, when water temperature was above 4.56°C and no full moon was present. Peak fish abundance occurred during only 0.02–2.3% of the total time sampled. The threefold increase in fish abundance recorded after dam removal was observed despite yearly stocking efforts of adult alewife increasing 24% in postdam removal years. Finally, parallel studies of fish presence in the Penobscot River were used to compare the utility of this method as an indicator of fish abundance in response to dam removal.  相似文献   

11.
    
The goal of this study was to analyse the impacts of the sequence of 1 El Niño (2009–2010) and 2 La Niña (2007–2008 and 2010–2011) events on the interannual variability of daily streamflow during the growing season (April to September) and grass species abundance downstream from the Taureau reservoir (4,070 km2) on the Matawin River (Quebec, Canada). This reservoir has inverted the natural annual cycle of streamflow: Maximum flows occur in winter and minimum flows in springtime during snowmelt. Comparison of daily flows over the period from 2006 to 2011 using various statistical tests revealed a significant increase in flows released downstream from the reservoir during the 2 La Niña events, with a particularly large increase in the growing season (April to May) during the 1st La Niña event (2007–2008). In contrast, during the El Niño event (2009–2010), streamflow decreased significantly. As far as the abundance of plant species is concerned, the total number of obligate wetland species increased significantly after the 1st La Niña event and then decreased after the El Niño event, along with the total number of terrestrial species. The study shows that relatively intense El Niño Southern Oscillation events can have significant implications for the management of flows released downstream from reservoirs in Quebec and hence affect plant species abundance on islets.  相似文献   

12.
    
Two high‐head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine‐derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine‐derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

13.
    
Removal of two dams 32 m and 64 m high on the Elwha River, Washington, USA, provided the first opportunity to examine river response to a dam removal and controlled sediment influx on such a large scale. Although many recent river‐restoration efforts have included dam removal, large dam removals have been rare enough that their physical and ecological effects remain poorly understood. New sedimentary deposits that formed during this multi‐stage dam removal result from a unique, artificially created imbalance between fluvial sediment supply and transport capacity. River flows during dam removal were essentially natural and included no large floods in the first two years, while draining of the two reservoirs greatly increased the sediment supply available for fluvial transport. The resulting sedimentary deposits exhibited substantial spatial heterogeneity in thickness, stratal‐formation patterns, grain size and organic content. Initial mud deposition in the first year of dam removal filled pore spaces in the pre‐dam‐removal cobble bed, potentially causing ecological disturbance but not aggrading the bed substantially at first. During the second winter of dam removal, thicker and in some cases coarser deposits replaced the early mud deposits. By 18 months into dam removal, channel‐margin and floodplain deposits were commonly >0.5 m thick and, contrary to pre‐dam‐removal predictions that silt and clay would bypass the river system, included average mud content around 20%. Large wood and lenses of smaller organic particles were common in the new deposits, presumably contributing additional carbon and nutrients to the ecosystem downstream of the dam sites. Understanding initial sedimentary response to the Elwha River dam removals will inform subsequent analyses of longer‐term sedimentary, geomorphic and ecosystem changes in this fluvial and coastal system, and will provide important lessons for other river‐restoration efforts where large dam removal is planned or proposed. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

14.
为全面、客观反映美国退役坝拆除的真实情况,通过文献检索和专题调研,在综述美国退役坝拆除背景及现状的基础上,分析了美国拆坝的主要原因,即环境、安全和经济因素。案例研究表明,美国拆坝旨在消除老化坝的安全风险,恢复溯河性鱼类洄游以及节省无成本效益的开支。水坝退役是水坝生命周期管理中的一个重要阶段,拆坝并不意味着不能建坝,目前水电仍然是美国最大的可再生能源电力来源。美国在水坝退役方面的理念和经验可为我国水库降等与报废管理提供借鉴。  相似文献   

15.
    
River bird assemblages can serve as beacons of environmental change associated with restoration or degradation. River birds regularly rely on riverine resources at some point in their life cycle, vary in the scale of temporal and spatial of use and forage at multiple levels of the food web (e.g. fish, aquatic plants, aquatic or emergent insects). We present a novel river bird survey method that is more easily employed and less intrusive than riverbank transect or boat surveys and encompasses a wide suite of species and a year‐round time frame. We evaluate the relative efficacy of different levels of survey duration (20, 15, 10 or 5 min), number of surveys (every 2 weeks in spring and fall and every 3 weeks in summer and winter) and number of sites on the survey's ability to document species richness and bird abundance. We used two statistical approaches, species accumulation curves (for duration, number of surveys and number of sites) and first‐order Jackknifes (for duration). We conclude that a biweekly or triweekly survey, 25 sites in the focal river, and a survey duration of at least 15 min are sufficient to meet our objectives. This logistically efficient survey approach facilitates monitoring complex and long‐term change such as that associated with river restoration and dam removal. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
    
Dam removal is an increasingly practised river restoration technique, and ecological responses vary with watershed, dam and reservoir properties, and removal strategies. Moderate‐sized dams, like Hemlock Dam (7.9 m tall and 56 m wide), are large enough that removal effects could be significant, but small enough that mitigation may be possible through a modified dam removal strategy. The removal of Hemlock Dam in Washington State, USA, was designed to limit channel erosion and improve fish passage and habitat by excavating stored fine sediment and reconstructing a channel in the former 6‐ha reservoir. Prior to dam removal, summer daily water temperatures downstream from the dam increased and remained warm long into the night. Afterwards, a more natural diel temperature regime was restored, although daily maximum temperatures remained high. A short‐lived turbidity pulse occurred soon after re‐watering of the channel, but was otherwise similar to background levels. Substrate shifted from sand to gravel–cobble in the former reservoir and from boulder to gravel–cobble downstream of the dam. Initially, macroinvertebrate assemblage richness and abundance was low in the project area, but within 2 years, post‐removal reaches upstream and downstream of the dam had diverse and abundant communities. The excavation of stored sediment and channel restoration as part of the dam removal strategy restored river continuity and improved benthic habitat while minimizing downstream sedimentation. This study provides a comparison of ecological effects with other dam removal strategies and can inform expectations of response time and magnitude. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

17.
    
During the previous century, the wetland area in the lower Missouri River alluvial valley was reduced by 39% because of river channelization and bank stabilization projects. The Great Flood of 1993 reversed the trend of wetland loss by creating 466 new wetlands in the alluvial valley between Kansas City and St. Louis, Missouri. We estimated amphibian occupancy, detection probability and number of species exhibiting evidence of reproduction in eight flood‐created and 16 pre‐flood existing wetlands from 1996 through 1998. We also evaluated whether hydroperiod (the number of days any water was present in a wetland from 20 February through 31 August) and distance to river predicted those values. Detection probabilities for adult amphibian species were relatively constant across years and ranged from 0.013 [Great Plains toad (Anaxyrus cognatus)] to 0.280 [Woodhouse's toad (Anaxyrus woodhousii woodhousii)]. Occupancy of adult amphibians differed across years and was not correlated with habitat features. Estimated occupancy probabilities for amphibian species ranged from 0.126 [Plains spadefoot (Spea bombifrons)] to 0.896 [boreal chorus frog (Pseudacris maculata)]. Almost double the number of amphibian species showed evidence of reproduction in existing wetlands (wetlands created before the Great Flood of 1993) when compared with that in flood‐created wetlands. Similarly, temporary wetlands had nearly double the number of amphibian species showing evidence of reproduction when compared with permanent wetlands. Finally, the highest number of species showed evidence of reproduction in wetlands with spring–summer hydroperiods between 135 and 140 days. All these relationships suggest that the invasion and persistence of predators in wetlands negatively influence amphibian reproduction. If the Missouri River is allowed to reconnect with the alluvial valley, more predators may be introduced into wetlands, leading to reduced amphibian occupancy and reproduction. However, this connection will not likely occur over the entire alluvial valley and, therefore, should not adversely impact amphibians that find refuge in higher‐elevation, non‐connected regions of the alluvial valley. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
    
Since the serial discontinuity concept (SDC) of rivers is proposed, few studies have tested it in a highly fragmented river ecosystem. In this study, environmental factors, phytoplankton species richness, and SDC predictions were demonstrated along the 13 cascade dams in a subtropical river (China). Our results indicated that among environmental factors, water temperature and transparency have seasonal differences, and river width has spatial differences; total species richness (TSR) increases from upstream to downstream, and distance is the reason for its variation. In addition, TSR also has spatial variations in each cascade dam, with the maximum or minimum value of each cascade section often occurring near the dam. A predictive model was constructed and revealed that seasonal differences in species richness were more significant than spatial differences, which were mainly observed during wet periods. Taken together, these results suggest that the construction of cascading dams enhances spatial differences in phytoplankton species richness, especially during periods of abundant water. In addition, environmental parameters such as water temperature, pH, and DO and TSR all support SDC predictions. In the future, we will continue to investigate this aquatic ecosystem to study more phytoplankton-related indices affected by the cascade damming, and hope to fully validate the SDC predictions.  相似文献   

19.
    
Dam removal is an increasingly common restoration technique in lotic ecosystems. Potential dam removal benefits include improved aquatic organism passage, restoration of natural flow dynamics and a general improvement in habitat for native species. However, understanding potential dam removal outcomes requires data on ecosystem response in a wide variety of settings. We evaluated fish and benthic macroinvertebrate response to removal of the Spruce Pine dam in western North Carolina, USA. This dam was partially breached prior to removal, and impounded a coolwater river, both scenarios under which dam removal has been under‐studied. Post‐removal shifts in fish and benthic macroinvertebrate assemblages did not occur, suggesting that previously documented patterns of assemblage change in response to dam removal, particularly in the area upstream from the dam, are not universal, and may depend upon factors such as river gradient and water temperature, and the available species pool. Such information can aid managers in identifying conditions under which an expectation of significant instream habitat improvement in response to dam removal may not be warranted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
    
The restoration of ecological continuity along the Sélune River (Normandy, France) involves the removal of two tall hydroelectric dams (36 m removed in 2019 and 16 m in 2021), a project without precedent in Europe. During the pre‐removal phase (2014–2018), we performed scientific monitoring of the vegetation that was colonizing alluvium in the former dam reservoir (length: 19 km; surface area: 151 ha). Our study aimed to analyse if spontaneous vegetation could ecologically restore the riparian zone and help maintain fine sediment after dam removal. We used colonization indicators related to vegetation structure, taxonomic richness and diversity, and composition. These indicators were calculated at two spatial scales (local, at a single site, and broad, along the reservoir). The aim was to (a) characterize the spontaneously established species pool; (b) analyse longitudinal patterns in vegetation colonization; and (c) assess temporal changes in the species community. Our results show that diverse plant communities have developed. Slight differences in longitudinal and lateral patterns existed; they were linked with habitat heterogeneity and the reservoir's slow pace of draining. We observed fast spontaneous terrestrialization, which has resulted in cover stabilization, decreased diversity, and the development of herbaceous riverbank communities, with very few invasive species. This finding suggests stabilization potential is high and passive ecological restoration could occur, at least locally. Further analyses focusing on functional traits could help inform future management decisions regarding revegetation on reservoir alluvium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号