首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The Apalachicola–Chattahoochee–Flint (ACF) River basin is an important ecological and economic component of a three‐state region (Florida, Alabama and Georgia) in the southeastern U.S. Along the Apalachicola River in northwest Florida, the duration of floodplain inundation has decreased as a result of declining river levels. Spring and summer flows have diminished in volume because of water use, storage and evaporation in reservoirs, and other anthropogenic and climatic changes in the basin upstream. Channel erosion from dam construction and navigation improvements also caused river levels to decline in an earlier period. In this paper, we document trends in floodplain forest tree species composition for the interval spanning these influences. Historic tree inventories from the 1970s were compared to present‐day forests through non‐metric multidimensional scaling, indicator species analysis (ISA) and outlier detection. Forests are compositionally drier today than in the 1970s. Overstory to understory compositional differences within habitats (levees, high/low bottomland forest and backswamps) are as large as the species contrasts between habitats. Present‐day forests are also compositionally noisier with fewer indicator species. The largest individual declines in species density and dominance were in backswamps, particularly for Fraxinus caroliniana Nyssa ogeche and Nyssa aquatica. We discuss how contrasts in the compositional change signal for levee and backswamp landform habitats reflect a complex biogeomorphic response to fluctuating river flows for alluvial rivers in humid climates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
为弥补图论法无法考虑水量动态传输能力的缺陷,在运用图论连通度理论评价河网水系连通状况的基础上,通过建立HEC_HMS水文模型模拟河道流量,构造表征河网水量交换能力的连通因子,构建了基于改进图论与水文模拟方法的河网水系连通性评价模型。秦淮河流域河网水系连通状况实例评价结果表明,秦淮河流域水系连通度由2000年的0.0044下降至2010年的0. 0029,且2010年水系连通度水平不高,符合实际情况,模型评价结果合理可靠。  相似文献   

3.
    
Based on detailed historical surveys from 1812, the natural riverine landscape of a 10.25‐km‐long reach of the Danube River in the Austrian Machland region prior to channelization is analysed. Anthropogenically induced changes of fluvial dynamics, hydrological connectivity and aquatic habitat composition are discussed, comparing the situations following channelization (1925) and flow regulation (1991). In 1812 the alluvial river–floodplain system of the Danube River comprised a highly complex channel network, numerous gravel bars and extensive islands, with the main channel and side arms (eupotamon) representing about 97% of the entire water surface at low flow. The floodplain was characterized by relatively flat terrain and numerous natural trenches (former active channels) connected to the main channel. These hydromorphological conditions led to marked expansion/contraction of the water surface area at water level fluctuations below bankfull (‘flow pulse’). The high degree of hydrological connectivity enabled intensive exchange processes and favoured migrations of aquatic organisms between the river and floodplain habitats over a period of approximately 90 days per year. Overall in 1812, 57% of the active zone (active channels and floodplain) was inundated at bankfull water level. Channelization and construction of hydropower plants resulted in a truncated fluvial system. Consequently, eupotamal water bodies decreased by 65%, and gravel/sand bars and vegetated islands decreased by 94% and 97%, respectively, whereas the area of the various backwaters doubled. In 1991 the former ‘flow pulse’ was halved due to artificial levees and embankments, greatly diminishing hydrological connectivity and decoupling large areas of the floodplain from the main channel. Active overflow, formerly playing an important role, is now replaced by backwater flooding and seepage inflow in isolated water bodies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
    
Channelization and embankment of rivers has led to major ecological degradation of aquatic habitats worldwide. River restoration can be used to restore favourable hydrological conditions for target species or processes. However, the effects of river restoration on hydraulic and hydrological processes are complex and are often difficult to determine because of the long‐term monitoring required before and after restoration works. Our study is based on rarely available, detailed pre‐restoration and post‐restoration hydrological data collected from a wet grassland meadow in Norfolk, UK, and provides important insights into the hydrological effects of river restoration. Groundwater hydrology and climate were monitored from 2007 to 2010. Based on our data, we developed coupled hydrological/hydraulic models of pre‐embankment and post‐embankment conditions using the MIKE‐SHE/MIKE 11 system. Simulated groundwater levels compared well with observed groundwater. Removal of the river embankments resulted in widespread floodplain inundation at high river flows (>1.7 m3 s?1) and frequent localized flooding at the river edge during smaller events (>0.6 m3 s?1). Subsequently, groundwater levels were higher and subsurface storage was greater. The restoration had a moderate effect on flood peak attenuation and improved free drainage to the river. Our results suggest that embankment removal can increase river–floodplain hydrological connectivity to form a more natural wetland ecotone, driven by frequent localized flood disturbance. This has important implications for the planning and management of river restoration projects that aim to enhance floodwater storage, floodplain species composition and biogeochemical cycling of nutrients. © 2016 The Authors. River Research and Applications Published by John Wiley & Sons Ltd.  相似文献   

5.
探讨河网连通性内涵,将河网连通性分为结构连通性和水力连通性;基于图论,将河网概化为图模型,以图模型可达性特征,利用Matlab对河网的结构连通性做出定量评价。考虑不同河道之间输水能力差异性,用河道水流阻力的倒数作为水流流通度,通过Arc GIS构建权值邻接矩阵,通过Matlab实现对河网的水力连通度的定量评价。以常熟市燕泾圩平原河网为例,对水系规划前后的河网连通性进行定量评价,结果表明,规划后的河网结构连通性和水力连通性均有所增加。  相似文献   

6.
    
The Tonle Sap River (TSR) serves as a natural medium for the reversal flow between Tonle Sap Lake (TSL) and the Mekong River to sustain productivity and biodiversity in the TSR floodplain and TSL. Understanding the hydrological connectivity and its dynamics in the TSR, including its floodplain, is therefore important to support activities that aim to maintain ecological services in the TSR–TSL system. Thus, the main objective of this study is to examine the hydrological connectivity of the TSR and its floodplain by a modelling approach that integrates inundation patterns and sediment dynamics. The Caesar–Lisflood model was applied to describe inundation, sediment erosion, transport, and deposition in the TSR for the period of 2003–2013. The inundation areas connected to the TSR ranged from 140 to 2,327 km2, whereas the isolated inundation areas from the TSR ranged from 0.27 to 504 km2. Sediment dynamics showed its influence on inundation patterns and hydrological connectivity and could alter the yearly inundation ratio (defined as a normalized inundation frequency with a value ranging from 0 to 1) up to 0.8. Our approach provides a quantitative way to determine key factors (e.g., total inundation areas, seasonality, and connectivity of inundation patterns) for further investigation of ecological processes in relation to the inundation patterns and sediment dynamics in the TSR and TSL.  相似文献   

7.
扬州市主城区水系连通性定量评价及改善措施   总被引:1,自引:0,他引:1  
为研究扬州市主城区水系连通状况,基于图论边连通度方法,利用GIS技术提取水系,建立了扬州市主城区水系图模型并计算了水系边连通度。结果表明:扬州市主城区水系连通度为2;影响水系整体连通性的关键河段为七里河与沙施河交汇口至古运河段、仪扬河与赵家支沟交汇口至西银沟段、揽月河闸至赵家支沟段以及老沙河与沙施河交汇口至曲江公园段;关键水闸为扬州闸、黄金坝闸、平山堂泵站、明月湖闸,这4个闸站关闭后分别使整体的连通度降低了50%;可采用河道清淤、生态护坡、水闸调控等措施来改善扬州市主城区水系连通性。  相似文献   

8.
对于复杂河网水系来说,水系连通方案的选择决定了河道是否有效连通以及各种功能能否得以保障。为了优选最佳水系连通方案,本文以清潩河许昌段为研究对象,借助图论法构建了城市水系河网图模型;考虑多闸联合调度以及各节点水量平衡关系,并利用图模型的邻接矩阵和加权邻接矩阵来描述河网水系对水量的分配作用,进而计算整个河网水系各河段和节点的流量值;以水生态景观面积最大为优选目标,结合河网水量分配关系和水力约束建立了多闸联合调度下的水系连通方案优选模型,优选得到在不同工况下的清潩河许昌段最佳水系连通方案。结果显示,在多数连通方案下河网流量可能会超出流量限值,而优选方案下的河网流量不仅可以满足流量约束、保障河网功能需求,还可有效提高水生态景观面积。  相似文献   

9.
    
Hydrologic connectivity between the channel and floodplain is thought to be a dominant factor determining floodplain processes and characteristics of floodplain forests. We explored the role of hydrologic connectivity in explaining floodplain forest community composition along streams in northern Missouri, USA. Hydrologic analyses at 20 streamgages (207–5827 km2 area) document that magnitudes of 2‐year return floods increase systematically with increasing drainage area whereas the average annual number and durations of floodplain‐connecting events decrease. Flow durations above the active‐channel shelf vary little with increasing drainage area, indicating that the active‐channel shelf is in quasi‐equilibrium with prevailing conditions. The downstream decrease in connectivity is associated with downstream increase in channel incision. These relations at streamflow gaging stations are consistent with regional channel disturbance patterns: channel incision increases downstream, whereas upstream reaches have either not incised or adjusted to incision by forming new equilibrium floodplains. These results provide a framework to explain landscape‐scale variations in composition of floodplain forest communities in northern Missouri. Faust ( 2006 ) had tentatively explained increases of flood‐dependent tree species, and decreases of species diversity, with a downstream increase in flood magnitude and duration. Because frequency and duration of floodplain‐connecting events do not increase downstream, we hypothesize instead that increases in relative abundance of flood‐dependent trees at larger drainage area result from increasing size of disturbance patches. Bank‐overtopping floods at larger drainage area create large, open, depositional landforms that promoted the regeneration of shade‐intolerant species. Higher tree species diversity in floodplains with small drainage areas is associated with non‐incised floodplains that are frequently connected to their channels and therefore subject to greater effective hydrologic variability compared with downstream floodplains. Understanding the landscape‐scale geomorphic and hydrologic controls on floodplain connectivity provides a basis for more effective management and restoration of floodplain forest communities. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

10.
    
Barriers within streams can affect riverine species' ability to access habitats and may reduce their population viability. Connectivity metrics attempt to quantify the impacts of barriers; however, little is known about their functioning when applied to dendritic habitats such as watersheds. Several graph‐theoretic connectivity metrics were calculated on rivers originating in the Luquillo Mountains of Puerto Rico. These metrics were classified into two primary groups: metrics that count weighted paths through the stream network and metrics that predict the flow of organisms through a stream reach. Representative metrics from each of these categories were suggested to model the effects of dams and water intakes, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
    
Globally, dams and water extractions are well‐recognised disruptors of flow regimes in floodplain wetlands, but little is known of the hydrological and ecological impacts of floodplain earthworks constructed for irrigation, flood mitigation and erosion control. We mapped the distribution of earthworks with high‐resolution SPOT (Système Probatoire d'Observation de la Terre) imagery in an internationally recognised Ramsar wetland, the Macquarie Marshes of the Murray–Darling Basin, Australia. There were 339 km levees, 1648 km channels, 54 off‐river storages and 664 tanks (0.5–5 m high), detected within the 4793 km2 floodplain study area. Earthworks reduced localised flooding compared with undeveloped sites. The most pronounced disconnection of the original floodplain (73.0%) occurred where earthworks were most concentrated compared with areas with few earthworks (53.2%). We investigated relationships between hydrological connectivity and mortality of the perennial flood‐dependent river red gum Eucalyptus camaldulensis at 55 floodplain sites (225 × 150 m). Over half of the river red gums were dead at 21.8% of the sites. Earthworks blocked surface flows to flood‐dependent vegetation and drowned vegetation in artificially inundated off‐river storages. Mortality was due to impacts of earthworks and potentially exacerbated by effects of river regulation, water extraction and climate. River red gums were healthiest in narrow river corridors where earthworks confined flows and flows could recede freely. Rehabilitation of flood‐dependent ecosystems should focus on reinstating lateral connectivity and protecting environmental flows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
    
In floodplain ecosystems, the lateral hydrological connectivity between the main river channel and the secondary channels plays a major role in shaping both the habitat conditions and the macroinvertebrate diversity. Among other threats, human activities tend to reduce the lateral connectivity, which increases floodplain terrestrialization and induces a loss of aquatic biodiversity. Consequently, the restoration of lateral connectivity is of growing concern. We studied four secondary channels of the Rhône floodplain that were subjected either to no restoration or to three different restoration measures (river flow increase only, flow increase plus dredging and flow increase plus reconnection to the river). Macroinvertebrate and environmental data were analysed one year before and during a period of five years after restoration. We expected a progressive increase of lateral connectivity according to the type of restoration. Changes in macroinvertebrate assemblages were predicted to be towards more rheophilic communities and proportionally related to the changes in lateral connectivity. In the reconnected channel, lateral connectivity increased and remained high five years after restoration. In the dredged channel, the immediate increase of the lateral connectivity metric induced by sediment removal was followed by a rapid decrease. In the unrestored channel and the channel only influenced by flow increase, the metric remained constant in time. The macroinvertebrate composition and the rarefied EPT richness changes were proportionally related to the changes in lateral connectivity. Alien species richness and densities increased progressively in all channels after restoration. Our results showed that modifications of the lateral connectivity lead to predictable changes in macroinvertebrate diversity. Synergistic interactions between restoration and longer‐term changes (e.g. climatic change, invasion of alien species) encourage long‐term monitoring to assess the durability and trends of restoration measures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
基于图论的河道-滩区系统连通性评价方法   总被引:7,自引:2,他引:5  
河道-滩区系统的连通性是维持河流生态系统健康的重要因素.基于图论连通度理论,将河道-滩区系统中的水流通道、鬃岗地形、小型封闭水域和牛轭湖等微地貌单元概化为图模型.并利用ArcGIS平台和DEM模型实现其表述.在此基础上,建立图的邻接矩阵,进行连通性分析和水流通道连通度计算,实现了河道-滩区系统连通程度分析的定量化.以瓯...  相似文献   

14.
河流系统的连通性是维持河流生态系统健康的重要因素。基于图论连通度理论,将河道-滩区系统中的水流通道、鬃岗地形、小型封闭水域和牛轭湖等微地貌单元概化为图模型,并利用ArcGIS平台和DEM模型实现其表述。在此基础上,建立图的邻接矩阵,进行连通性分析和水流通道连通度计算,实现了河道-滩区系统连通程度分析的定量化。最后以瓯江丽水河段的河道-滩区系统为例,进行了一定水位条件下的连通状况模拟和连通程度定量分析。案例分析结果表明:通过确定关键性水流通道和水流通道汇合点,可对河流生态修复工程设计方案进行优化;利用本文所提出的方法对河道-滩区系统的连通性进行定量评价是有效可行的。该方法可用于河流健康评估、河流生态修复工程优化、河湖水网连通程度的定量分析等。  相似文献   

15.
在对变电站的断路器或刀闸进行分、合操作时,由于人员和电网等方面的安全性要求,在特定情况下需要闭锁特定断路器或刀闸的分、合操作(包括业内所称的“五防”闭锁)。同一断路器或刀闸是否需要闭锁,与变电站电网当时的运行状态有关,即与当时的电网连通状态有关。文中利用图论中图的邻接矩阵表示方法,通过对矩阵中元素的含义以及矩阵运算的含义进行适当修改,实现了对于每一特定的变电站,可以根据其一次接线图,通过规范性的步骤和方法,得到每一断路器或刀闸的分、合操作是否需要闭锁与变电站电网的连通状态的逻辑关系的静态表达式,即得到每一断路器或刀闸的分、合操作是否需要闭锁与其他断路器或刀闸的开合状态的逻辑关系的静态表达式。  相似文献   

16.
    
The St. John's Bayou water control structure near New Madrid, MO, connects the main Mississippi River to two large backwater areas called the New Madrid Floodway and St. John's Bayou. While this area has been altered, the New Madrid Floodway and St. John's Bayou account for the only substantial portion of the historic Mississippi River floodplain that remains and provides the only critical connection between backwater/floodplain habitat and the river. Fish passage was evaluated during April–December 2010 using ultrasonic telemetry. Stationary receivers were placed strategically at five locations above and below the structure in St. John's Bayou, in the floodway and the outlet to the Mississippi River. A total of 100 individuals representing 14 species were tagged. Total number of detections during an 8‐month period was 1 264 717. Fifteen individuals representing five species moved into the Mississippi and Ohio rivers; seven individuals returned to St. John's Bayou. Thirteen of the 14 species moved upstream through the structure. Of the 85 individuals that stayed in the bayou, 29 fish passed through the structure for a total of 92 passage events. The downstream : upstream passage was roughly 50:50. Passage was correlated with river rise, with frequency of passage being higher in spring, but passage occurred each month during the study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
基于改进的图论法,概化河网水系为图模型,考虑水量对河网水系连通性的影响,以反映流域水量指标的连通因子为权值,构建水系连通度定量评价模型,应用MATLAB计算河网加权连通度,实现对河网水系连通性的定量评价。以秦淮河流域为例,构建HEC-HMS水文模型,模拟流域短期和长期洪水过程,分析不同规模洪水过程下流域河网水系的连通程度,基于连通度定量评价结果对连通性进行等级划分。结果表明洪量与连通度基本符合线性关系;短期洪水过程与长期洪水过程相比的连通等级较差;构建的评价模型具有良好的适用性和可靠性。  相似文献   

18.
    
The main ecological and hydrological features of floodplain lakes (FPL) depend on the flood pulse. Temporal variations of connectivity result from natural fluctuations in a parent river water levels. The study area was a fragment of left fraction of the Bug River valley, within a gorge‐like section between Dorohusk and W?odawa. The aim of the study was to define a duration and frequency of potamophases and limnophases of 20 FPLs, during the period 1952–2013. A large variation of limnophase frequency was observed. The most frequently occurs short (8–30 days) and medium‐length (183–365 days) limnophases. In case of potamophases the most frequent were short episodes (8–30 days). In most water bodies, a general similarity of the duration of functional periods was observed. The average ratio of the duration of both phases showed prevalence of limnophases. Generally, two factors were observed that shape variability of functional periods in the study area: quantity of water input and FPL morphometry. The lower lake volume and less stable water input, the higher variability of hydrological connectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
    
The Atchafalaya River Basin (ARB) is the largest distributary basin of the Mississippi River and contains the largest tract of forested wetlands in North America. However, hydrologic manipulations for flood control, logging, and mineral extraction have altered how water flows through the ARB and have led to widespread stagnation and hypoxia. To address this, the State of Louisiana has developed a hydrologic restoration plan to increase connectivity between the Atchafalaya River and backswamp areas on the floodplain. Here, we report on water quality changes in the forested wetlands of the ARB during a flood pulse as part of a prerestoration monitoring programme. Monitoring stations were set up in the backswamp to collect data on water levels, dissolved oxygen, turbidity, temperature, and specific conductance. We found that when water levels were high enough to overtop bayou banks and spoil banks, north‐to‐south flow patterns were reinstated and water quality in the backswamp was improved. Specifically, hypoxic conditions, which had been common before the flood, were alleviated whereas the swamps were receiving flowing, oxygenated river water. The magnitude and duration of dissolved oxygen improvement was dependent on the length of time a site received river water. Our results suggest that stagnation and hypoxia can be alleviated in the ARB by increasing the amount of time river water can access to floodplain swamps.  相似文献   

20.
    
The complexities of hydrological phenomena, the causes that lead to these complexities, and the essences and defects of reductionism are analyzed. The driving forces for the development of hydrology and the formation of branch subjects of hydrology are discussed. The theoretical basis and limitations of existing hydrology are summarized. Existing misunderstandings in the development of the watershed hydrological model are put forward. Finally, the necessity of the expansion of hydrology from linear to nonlinear is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号