首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For many years, navigable lowland rivers have been embanked artificially or suffered from substantial shipping wave action, leading to habitat degradation. Recently, riparian habitats were restored by creating foreshores and spawning grounds in the river Yser, a lowland river in Flanders, Belgium. The aim of this paper was to evaluate the role of these restored habitats for spawning and nursery of juvenile fish. To cover a wide range of anthropogenic disruption, four riparian mesohabitat types were selected and compared, ranging from semi‐natural over artificial spawning grounds and foreshores to artificial embankments. Juvenile fish were subjected to sampling by using electrofishing between June and September 2009 at different microhabitats located in five sites of each riparian mesohabitat type. Juvenile fish strongly preferred natural riparian habitats, whereas artificial embankments showed the lowest species richness, abundance and functional organization of juvenile fish species. Restored riparian habitats appeared to be an appropriate alternative for artificial embankments in navigable lowland rivers but still score significantly less than natural habitats. Juvenile fish avoided bare microhabitats but did not prefer any other microhabitat type (reed, woody or grassy vegetation), emphasizing the importance of microhabitat diversity. This paper provides valuable insights into riparian habitat restoration to river managers and stakeholders. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Urban rivers are often engineered to increase flood conveyance and stabilize channel size and position. This paper analyses habitat surveys of 180 urban river stretches of differing engineering type from four river basins (river Tame, West Midlands, UK; tributaries of the lower river Thames, UK; river Botic, Prague, Czech Republic; river Emscher, North‐Rhine Westphalia, Germany). Kruskal–Wallis tests identify significant differences in extent and/or frequency of flow types, bank and bed physical habitats, and vegetation characteristics associated with different styles of engineering. Principal Components Analysis identifies four key environmental gradients in the data set: sediment supply and retention; extent and diversity of in‐channel vegetation and riparian trees; bed and bank sediment calibre; flow type energy and complexity. These gradients discriminate stretches of differing planform, cross section and reinforcement and are significantly correlated with indices of degree and type of bank and bed reinforcement, pollution and presence of alien nuisance plant species. The analytical results illustrate statistically significant associations between different styles and levels of engineering intervention and the number and nature of physical habitats present in urban rivers. The results provide a basis for filtering sites for potential remedial measures prior to site‐specific surveys and modelling, for comparing sites and for tracking trajectories of change at sites that are subject to changes in channel engineering. They provide evidence that river condition and degree of engineering are not inversely related in a simple linear way, and that engineering of urban river channels, in the form of mixed, patchy reinforcement can contribute a great deal to habitat diversity where other controls on flow heterogeneity are more difficult to manipulate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Setback levees, in which levees are reconstructed at a greater distance from a river channel, are a promising restoration technique particularly for alluvial rivers with broad floodplains where river‐floodplain connectivity is essential to ecological processes. Documenting the ecological outcomes of restoration activities is essential for assessing the comparative benefits of different restoration approaches and for justifying new restoration projects. Remote sensing of aquatic habitats offers one approach for comprehensive, objective documentation of river and floodplain habitats, but is difficult in glacial rivers because of high suspended‐sediment concentrations, braiding and a lack of large, well‐differentiated channel forms such as riffles and pools. Remote imagery and field surveys were used to assess the effects of recent and planned setback levees along the Puyallup River and, more generally, the application of multispectral imagery for classifying aquatic and riparian habitats in glacial‐melt water rivers. Airborne images were acquired with a horizontal ground resolution of 0.5 m in three spectral bands (0.545–0.555, 0.665–0.675 and 0.790–0.810 µm) spanning from green to near infrared (NIR) wavelengths. Field surveys identified river and floodplain habitat features and provided the basis for a comparative hydraulic analysis. Broad categories of aquatic habitat (smooth and rough water surface), exposed sediment (sand and boulder) and vegetated surfaces (herbaceous and deciduous shrub/forest) were classified accurately using the airborne images. Other categories [e.g. conifers, boulder, large woody debris (LWD)] and subdivisions of broad categories (e.g. riffles and runs) were not successfully classified either because these features did not form large patches that could be identified on the imagery or their spectral reflectances were not distinct from those of other habitat types. Airborne imagery was critical for assessing fine‐scale aquatic habitat heterogeneity including shallow, low‐velocity regions that were not feasible or practical to map in the field in many cases due to their widespread distribution, small size and poorly defined boundaries with other habitat types. At the reach‐scale, the setback levee affected the amount and distribution of riparian and aquatic habitats: (1) the area of all habitats was greater where levees had been set back and with relatively more vegetated floodplain habitat and relatively less exposed sediment and aquatic habitat, (2) where levees confine the river, less low‐velocity aquatic habitat is present over a range of flows with a higher degree of bed instability during high flows. As river restoration proceeds in the Pacific Northwest and elsewhere, remotely acquired imagery will be important for documenting its effects on the amount and distribution of aquatic and floodplain habitats, complimenting field data as a quantitative basis for evaluating project efficacy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Log‐Vane is a grade‐control structure of common use to stabilize river bed and river banks. The purpose of this paper is to study the scour phenomena downstream of Log‐Vanes in straight rivers. The main goal is to obtain design equations to determine the main scour parameters and the scour morphology. All the experiments have been carried out in a horizontal channel and in clear water conditions. Log‐Vanes made of wood, with different heights and vane angles, were tested. Different hydraulic conditions including densimetric Froude numbers, water drops and tail water values were tested. Results show that the tail water depth is an important variable to determine the maximum scour depth. The vane angle results to be an important parameter to predict the scour parameters. Dimensional analysis allows to derive design equations useful to estimate the maximum scour depth, maximum length of the scour and maximum height and length of the dune. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
河流健康的概念及指标体系和评价方法   总被引:12,自引:0,他引:12       下载免费PDF全文
指出健康河流不但应当具有健康的生态系统,还应具有良好的社会服务功能;与生态河道和景观河道相比,健康河流兼有生态河道和景观河道的有益特征,具有更广泛的适用性;河流健康评价指标应当具备易于理解、便于定性或定量描述、便于监测、便于作为管理目标和拟定相应对策等特点。以此为依据,提出包括流量偏离率、水质综合污染指数、底栖大型无脊椎动物生物完整性指数、河流廊道连通性、河道稳定性、栖息地质量、缓冲带宽度、林草覆盖度、河流美景度和实际防洪能力等指标的河流健康评价指标体系及评价方法。  相似文献   

6.
Three river conceptual models make differing predictions about the major source of primary production in lowland rivers, acknowledging the importance of primary productivity in the ecology and management of lowland rivers. Patterns of primary production in lowland rivers are still an area of considerable uncertainty. The objective of this study was to examine the major sources and transformations of organic matter in an Australian lowland river and compare them to the predictions of existing models. The broad approach adopted was to quantify the contribution from the major ecosystem components and compare these with estimates of system metabolism determined using open water measures of diel oxygen change. Three 4‐km river reaches were selected to represent the extent of variation found along the free‐flowing lowland sections of the Murray River, one of Australia's largest and most regulated rivers. Annual open water gross primary production (GPP) estimates for the Murray R. during this study ranged from 221 to 376 gC m?2 y?1 and were similar to other large rivers. Examination of the net contribution of organic matter to the channel indicates that primary productivity in the Murray R. is derived from a combination of phytoplankton, riparian vegetation and macrophytes, but that the major source varies both spatially and temporally. The present study confirms that the River Continuum Concept (RCC), the Flood Pulse Concept (FPC) and Riverine Productivity Model (RPM) all have some application to Australian lowland rivers, but that synthesis of the models will be difficult until we can incorporate the extent, causes and consequences of primary production variability. This study also highlights the importance of the microbial loop and macrophytes in the ecology of the Murray R. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
River regulation and water management practices have led to alteration of the flood regimes of all large rivers in Germany. To investigate its influence on the terrestrial arthropod fauna, a comparative study was carried out on the distribution of ground beetles (Carabidae) and spiders (Araneae) at the potamal sections of three large rivers in northern Germany, the Rivers Weser, Elbe and Oder. The three rivers differ markedly in their flood dynamics, mainly owing to weirs and polder management practices, but also owing to natural conditions in their headwaters. In total, 45 sites were examined with a total capture of 46 727 carabid beetles and 38 066 adult spiders, representing 178 and 209 species, respectively. Using multivariate TWINSPAN analyses we found that the ground beetle species assemblages clearly varied according to the different flood regimes. By contrast, the spiders differentiate well between sites of different habitat structure. In particular, the river margins hosted a specialized carabid fauna, and the alluvial Quercus–Ulmus forests were habitat for some rare and endangered carabid and spider species. Whereas the fauna of the strongly regulated River Weser was impoverished regarding stenotopic hygrophilous species, the fauna of the more natural Rivers Elbe and Oder depended very much on the duration and timing of the flooding, as well as on the local micro‐topographical situation. It is concluded that low lying areas behind dykes of the Elbe, or in polders of the Oder, which become frequently inundated by river or ground water, are extremely valuable for invertebrate conservation. The data suggest that careful polder management may support suitable habitat creation for riparian species, as long as the inundation scheme corresponds to natural flood dynamics conditions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Woody debris has several important roles in running water. Less is known about the ecology of wood in great rivers than in smaller rivers and streams. We used a probability survey to estimate the abundance of littoral and shoreline wood along the following mid‐continent great rivers of the United States in summer 2004–2006: the Missouri River, Upper Mississippi River, and the Ohio River. We counted wood pieces >0.3 m in diameter from a zone between the bank full level out into the river 10 m. We categorized wood according to its origin and function as “beached” (transported from upriver but not providing aquatic habitat), “wet” (origin unknown and providing aquatic habitat; includes snags), or “anchored” (attached to the bank at its current location and providing aquatic habitat). We counted 5900 pieces of wood at 447 sites across rivers. Approximately 56 percent of pieces were beached, 30 percent were wet, and 14 percent were anchored. Overall, mean abundance of wood was 2.6 pieces of wood 100 m?1 of shoreline (approximately 3.0 m3 100 m?1). Abundance of wood (pieces per unit distance of river) was much lower than has been reported for many smaller streams and rivers. There was more wood along the Upper Mississippi River (3.3 pieces 100 m?1) than elsewhere (≤2.4 pieces 100 m?1). The mean abundance of wood on the Ohio River decreased significantly between the 2004 and 2005 survey periods due to high flows. Longitudinal patterns in wood abundance were weak. There was less anchored and wet wood along shorelines protected by revetment (e.g., rip rap). There was generally more wood along shorelines where the riparian land use was characterized as forest rather than agriculture or developed. Mean abundance of wood along forested, un‐revetted shorelines was approximately four pieces 100 m?1 of shoreline (= 80 pieces km?1 of river). This estimate of mean wood abundance for what amounts to least disturbed riparian and shoreline conditions is relevant for great river bioassessment and management. Published in 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Urban river walls represent some of the most common habitat available to riparian species within heavily engineered urban river corridors, but research into the characteristics and diversity of river walls is very rare. In this study, the flora of urban river walls was surveyed at 16 sites (92 walls) along 32 km of the river Thames through central London to determine the characteristics and habitat origins of species found on these walls, whether these species indicated ‘an urban cliff effect’ occurring on wall habitats and whether plant species richness varied between different wall types. A total of 90 species were found on the walls, with the majority of species associated with disturbed areas and riparian habitats, supporting the idea of a ‘mass effect’ occurring, whereby the flora is maintained by propagule pressure from remnant or introduced habitats within urban or peri‐urban areas, rather than walls selecting for cliff/rock species. There was an increased incidence of plants from cliff/rock habitats found in the flora however, suggesting that an urban cliff effect does still occur. Species were organized along the river walls based on riparian/terrestrial gradients and stress tolerance, probably reflecting a gradient of wall height above river flows. Plant species richness was significantly higher on brick walls than that on sheet piling, indicating key differences between materials probably based on surface integrity. Large areas of connected river walls (‘wallscapes’) through heavily engineered urban rivers represent potential sites for the enactment of reconciliation ecology via habitat improvement in urban ecosystems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Extensive desnagging (removal of large woody debris and living riparian vegetation) and associated river improvement works were conducted in rivers of southeastern Australia (Victoria and New South Wales) between at least 1886 and 1995. Swamp drainage, large woody debris removal and vegetation clearing were strongly supported by legislation, government funding and institutional arrangements in both states. As a result, large amounts of large woody debris were removed from rivers, regenerating indigenous vegetation was cleared from within designed alignment widths and, ironically, huge numbers of exotic trees, especially willows, were planted. The environmental impacts of desnagging have only been documented on a few impacted rivers but have included increased flow velocity, spatially extensive bed degradation, massive channel enlargement and loss of fish habitat. Recognition of the need for more integrated land and water management, and new research on the hydraulic, geomorphic, biogeographic and ecological significance of large woody debris and the values of indigenous riparian vegetation during the 1980s led to a major shift in river rehabilitation. We have drawn on our own and other published research to further develop a set of guidelines for the incorporation of large woody debris into river rehabilitation plans. Our guidelines extend those recently prepared for southeastern Australia and address site selection, where to place timber, the amount to be introduced, how to distribute it, techniques of introduction and woody debris sources. However, in the long term, riparian vegetation rehabilitation within the potential recruitment zone is essential to supply large woody debris. Given that our results demonstrate that very large woody debris makes a significant contribution to the total loading, it will be a very long time (>100 years) before natural recruitment can be recreated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Nonnative plant invasions are a management concern, particularly in riparian forests, but little is known about mechanisms through which they influence vertebrate communities. In the American Southwest, native trees such as cottonwood (Populus spp.) are thought to provide better habitat for breeding birds than nonnative plants, which are more tolerant of human‐altered conditions. To evaluate effects of riparian forest composition on riparian‐nesting birds, we examined nest plant use along two rivers in New Mexico that differed in abundance of nonnative vegetation. Of the nests we observed, 49% along the Middle Rio Grande were constructed in nonnative plants, compared with 4% along the Gila River. Birds in the canopy and cavity‐nesting guilds constructed less than 5% of their nests in nonnative plants along either river. At the Middle Rio Grande, birds in the subcanopy/shrub guild constructed 67% of their nests in nonnative plants. Despite the relatively low availability of cottonwoods, they were used by greater numbers of species than any other woody plant at either river. Riparian obligates and species of conservation concern in the canopy and cavity guilds were especially dependent on cottonwood and Arizona sycamore (Platanus wrightii). Our results show that, although nonnative trees and shrubs support large numbers of nests for certain birds, cottonwoods and other large native trees are disproportionately important to riparian bird communities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The margins of large rivers are usually impacted by human settlements and activities, which may affect the occupancy and use of riparian habitats by many organisms. Among vertebrates, amphibians are likely the most sensitive to environmental changes, and they can be used as a model to identify attributes of the riparian habitats that are important for the maintenance of high species richness and functional diversity. We studied anuran assemblages in four large rivers of the Velhas River basin in southeastern Brazil during one year, focusing on features of the rivers and riparian habitats that influence species distribution. We tested whether a river under greater anthropogenic impact would shelter less species compared to three rivers of equivalent size under lower impact level, and whether lower species richness related to lower availability of preferred microhabitats. We found soil type at river margin and riparian vegetation structure to be the main factors influencing anuran distribution. Species richness was positively related to microhabitat diversity and availability of preferred microhabitats, which were the lowest in the most impacted river. Most species recorded at the rivers were not breeding there, and were present in larger numbers during the dry season, when temporary bodies of water dry at the vicinities of the large rivers. Conservation of a broad extension of the riparian habitat (200 m or more) would be efficient both to provide appropriate microhabitats for anurans and to maintain connectivity between breeding sites and large, permanent rivers used by several species during the dry season. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The recruitment of wood from the riparian zone to rivers and streams provides a complex habitat for aquatic organisms and can influence both aquatic biodiversity and ecosystem function. The Daly River in the wet–dry tropics of northern Australia is a highly seasonal, perennially flowing sand‐bed river where surveys of river wood aggregations at the reach scale (~2 km) in 2008 and 2009 recorded densities of 37–78 km?1 and identified distinct types of river wood aggregations: key pieces, standing trees, fallen trees, wrack and single pieces. After larger than average flows in the 2008/2009 wet season, between 46% and 51% of the surveyed river wood had moved. The distribution of wood age classes indicated continual recruitment and slow turnover of wood within the river. Surveys of fish and habitat characteristics at the mesohabitat scale (~100 m) showed fish species richness; diversity and fish abundance were not correlated to the proportion of wood present. Fish assemblage structure was associated with wood cover as well as other environmental variables such as stream width and depth. The importance of in‐stream wood also varied for different species and age classes of fish. This study documents the dynamic nature of river wood aggregations and their complex and variable distribution and suggests their importance as fish habitat in this tropical river. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Sandbars are an important aquatic terrestrial transition zone (ATTZ) in the active channel of rivers that provide a variety of habitat conditions for riverine biota. Channelization and flow regulation in many large rivers have diminished sandbar habitats and their rehabilitation is a priority. We developed sandbar‐specific models of discharge‐area relationships to determine how changes in flow regime affect the area of different habitat types within the submerged sandbar ATTZ (depth) and exposed sandbar ATTZ (elevation) for a representative sample of Lower Missouri River sandbars. We defined six different structural habitat types within the sandbar ATTZ based on depth or exposed elevation ranges that are important to different biota during at least part of their annual cycle for either survival or reproduction. Scenarios included the modelled natural flow regime, current managed flow regime and two environmental flow options, all modelled within the contemporary river active channel. Thirteen point and wing‐dike sandbars were evaluated under four different flow scenarios to explore the effects of flow regime on seasonal habitat availability for foraging of migratory shorebirds and wading birds, nesting of softshell turtles and nursery of riverine fishes. Managed flows provided more foraging habitat for shorebirds and wading birds and more nursery habitat for riverine fishes within the channelized reach sandbar ATTZ than the natural flow regime or modelled environmental flows. Reduced summer flows occurring under natural and environmental flow alternatives increased exposed sandbar nesting habitat for softshell turtle hatchling emergence. Results reveal how management of channelized and flow regulated large rivers could benefit from a modelling framework that couples hydrologic and geomorphic characteristics to predict habitat conditions for a variety of biota. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

15.
The mesoscale (100–102 m) of river habitats has been identified as the scale that simultaneously offers insights into ecological structure and falls within the practical bounds of river management. Mesoscale habitat (mesohabitat) classifications for relatively large rivers, however, are underdeveloped compared with those produced for smaller streams. Approaches to habitat modelling have traditionally focused on individual species or proceeded on a species‐by‐species basis. This is particularly problematic in larger rivers where the effects of biological interactions are more complex and intense. Community‐level approaches can rapidly model many species simultaneously, thereby integrating the effects of biological interactions while providing information on the relative importance of environmental variables in structuring the community. One such community‐level approach, multivariate regression trees, was applied in order to determine the relative influences of abiotic factors on fish assemblages within shoreline mesohabitats of San Pedro River, Chile, and to define reference communities prior to the planned construction of a hydroelectric power plant. Flow depth, bank materials and the availability of riparian and instream cover, including woody debris, were the main variables driving differences between the assemblages. Species strongly indicative of distinctive mesohabitat types included the endemic Galaxias platei. Among other outcomes, the results provide information on the impact of non‐native salmonids on river‐dwelling Galaxias platei, suggesting a degree of habitat segregation between these taxa based on flow depth. The results support the use of the mesohabitat concept in large, relatively pristine river systems, and they represent a basis for assessing the impact of any future hydroelectric power plant construction and operation. By combing community classifications with simple sets of environmental rules, the multivariate regression trees produced can be used to predict the community structure of any mesohabitat along the reach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Underwater soundscapes and their unique acoustic signatures are mainly generated through movement of streambed sediment, subsequent particle collisions, and turbulence created by water flowing over submerged obstructions such as rocks and woody debris. This study characterized river soundscapes in Alpine rivers of Trentino, (North East Italy) with the combined use of hydrophones and a new microelectricalmechanical systems based device (Hydroflown) that is capable of measuring particle velocity components of the sound field. Pool and riffle habitats affected and unaffected by hydropeaking were characterized in terms of their particle velocity and sound pressure levels across 10 octave bands (acoustic signature) to assess temporal variations in overall sound levels, changes in frequency composition, and relationship to hydromorphological habitat parameters. Data revealed that soundscapes affected by hydropeaking are highly homogenized, and sound pressure levels are strongly correlated with turbine discharge, which results in rapid, multiple‐fold spikes in low frequency amplitude levels within the typical hearing range of common teleost fish species. The outcomes of this study provide the basis for further examination of the resulting behavioural and physiological responses of organisms to anthropogenic changes in river soundscapes.  相似文献   

17.
Although small and medium‐size dams are prevalent in North America, few studies have described their year‐round impacts on the thermal regime of rivers. The objective of this study was to quantify the impacts of two types of dams (run‐of‐river, storage with shallow reservoirs) on the thermal regime of rivers in eastern Canada. Thermal impacts of dams were assessed (i) for the open water period by evaluating their influence on the annual cycle in daily mean water temperature and residual variability and (ii) for the ice‐covered winter period by evaluating their influence on water temperature duration curves. Overall, results showed that the run‐of‐river dam (with limited storage capacity) did not have a significant effect on the thermal regime of the regulated river. At the two rivers regulated by storage dams with shallow reservoirs (mean depth < 6 m), the annual cycle in daily mean water temperature was significantly modified which led to warmer water temperatures in summer and autumn. From August to October, the monthly mean water temperature at rivers regulated by storage dams was 1.4 to 3.9°C warmer than at their respective reference sites. During the open water period, the two storage dams also reduced water temperature variability at a daily timescale while increased variability was observed in regulated rivers during the winter. Storage dams also had a warming effect during the winter and the winter median water temperature ranged between 1.0 and 2.1°C downstream of the two storage dams whereas water temperature remained stable and close to 0°C in unregulated rivers. The biological implications of the altered thermal regimes at rivers regulated by storage dams are discussed, in particular for salmonids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Prediction of changes to in‐stream ecology are highly desirable if decisions on river management, such as those relating to water abstractions, effluent discharges or modifications to the river channel, are to be justified to stakeholders. The physical habitat simulation (PHABSIM) system is a well‐established hydro‐ecological model that provides a suite of tools for the numerical modelling of hydraulic habitat suitability for fish and invertebrate species. In the UK, the most high‐profile PHABSIM studies have focused on rural, groundwater‐dominated rivers and have related to low flow issues. Conversely, there have been few studies of urban rivers. This paper focuses on the application of PHABSIM to urban rivers and demonstrates how sensitivity analyses can be used to assess uncertainty in PHABSIM applications. Results show that physical habitat predictions are sensitive to changes in habitat suitability indices, hydraulic model calibration and the temporal resolution of flow time‐series. Results show that there is greater suitable physical habitat over a wider range of flows in a less engineered river channel when compared to a more engineered channel. The work emphasizes the need for accurate information relating to the response of fish and other organisms to high velocities. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
In December 2008, the draft programmes of measures (PoM) have been published in the EU member states, which list the measures that will be taken to enhance the ecological status of surface and groundwater bodies, and to reach the environmental objectives of the EU‐Water Framework Directive (WFD). We have analysed the German PoM to identify the main pressures and the restoration measures water managers planned to implement in streams and rivers. The objective was to evaluate the PoM and to identify the main, practically relevant knowledge gaps in river management on which applied river research should focus on. In general, the selection of measures in the PoM was reasonable. In accordance with the analysis of pressures and impacts in Germany, the PoM focussed on measures addressing morphological alterations and river continuity, and the results indicated that diffuse source pollution and fine sediment input were additional main pressures in Central European streams and rivers. Although point source pollution was not a main pressure in most rivers, respective point source measures have been selected for many water bodies. Apparently, these were so‐called basic measures that have to be taken due to other EU‐Directives or national laws. Therefore, although in line with the WFD, it seemed doubtful if the point source measures would help to substantially enhance the ecological status. Furthermore, the results indicated that there was a general lack of knowledge on the effect of restoration measures and a specific knowledge gap in how to enhance the ecological state of heavily modified water bodies (HMWB) in the lowland region with a high land‐use pressure, which was reflected by the high share of water bodies for which conceptual measures have been selected (e.g. developing management plans). Based on the analysis of the PoM and a literature review, we identified the following, practically relevant knowledge gaps in river management: (i) the morphodynamics of river reaches where natural channel dynamics have been restored, (ii) the combined effect of measures addressing diffuse nutrient and fine sediment input at different spatial scales (e.g. riparian buffer strips and land‐use changes), (iii) methods to identify suitable and efficient measures and to define environmental objectives for HMWB and (iv) the effect of measures on less well‐studied biological groups like macrophytes and phytoplankton. There is a strong need to summarize recent research results on these issues, to identify the knowledge gaps and research needs in detail, and to make the results of such a comprehensive literature review or meta‐analysis available for the next 6‐year management cycle and second WFD management plans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The impact of river incision induced by channelization and gravel mining on the structure of ground beetle assemblages in riparian habitats was investigated on three montane rivers in southern Poland. Ground beetles were collected on three benches of different elevation in 11 incised and 14 vertically stable cross sections of the rivers. In total, 5821 individuals representing 106 species were collected. The effect of river incision on the diversity and abundance of ground beetles depended on bench height. Only on the lowest bench, inundated about once per year on average, species richness of the assemblages was significantly reduced in incised river cross sections. On this bench, the abundance of the specialists of exposed riverine sediments, i.e. small and medium‐sized predators with high dispersal power and spring breeding strategy, was highly negatively affected by river incision. On the highest bench, large, brachypterous species with spring and autumn breeding strategy, typical of undisturbed habitats, were more abundant in incised cross sections. As this bench is practically not subjected to flooding even in vertically stable cross sections, these species probably benefited from the occurrence of riparian forest along most incised river sections, whereas the riparian areas along vertically stable sections are subjected to higher agricultural pressure. This study shows that in the mountain region where high precipitation helps to maintain moisture of the riparian habitats, river incision has a negative impact only on the specialists of exposed riverine sediments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号