首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of habitat enhancement on the invertebrate communities in five urban streams in Christchurch, New Zealand, were investigated. All streams underwent riparian planting, while extensive channel modifications were made at two streams, where a concrete dish channel and a wooden timber‐lined stream were removed and natural banks reinstated. Benthic invertebrates were collected before enhancement and 5 years after from the same locations. Invertebrates were also collected from control sites in each stream in 2001. Desired goals of enhancement activities included increasing the densities of mayflies and caddisflies, and decreasing densities of oligochaetes, snails and midges. Enhancement activities changed riparian vegetation and bank conditions, as well as substrate composition, instream organic matter and variability of instream velocities. Invertebrate communities prior to enhancement were typical of those in urban environments, and dominated by snails (Potamopyrgus, Physa), the amphipod Paracalliope, the hydroptilid caddisfly Oxyethira, oligochaetes and chironomids. Stream enhancement caused only small changes to the invertebrate community, with subtle shifts in overall abundance, species evenness, diversity, and ordination scores. Lack of a consistent strong response by invertebrates to enhancement activities, and continued absence of caddisflies and mayflies from enhanced sites may reflect lack of sufficient change to instream conditions as a result of stream enhancement, colonization bottlenecks for aerial stages of these animals, and the inability of individuals outside the urban watershed to perceive these enhanced ‘islands’ of good habitat. Alternatively, contamination of streambed sediments, excess sedimentation and reduced base flows may be limiting factors precluding successful invertebrate colonization in enhanced sites. These results highlight the importance of setting clear goals and objectives necessary to meet these goals. Enhancement of riparian zones in urban streams may not be adequate to improve benthic invertebrate communities. Identifying over‐arching factors that potentially limit invertebrate communities will enable the enhancement potential of streams to be better assessed, and allow managers to identify sites where recovery of biological communities is possible, and where such recovery is not. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Riparian vegetation development and macroinvertebrate assemblages were studied in 16 streams formed between 35 and 230 years ago, following glacial recession in Glacier Bay National Park, southeast Alaska. Riparian vegetation established most rapidly in streams where flow variation in downstream reaches was buffered by a lake. Riparian vegetation development was positively correlated with lower bank stability, but was independent of stream age. Roots and branches of riparian vegetation trailing into streams (trailing riparian habitat—TRH) were shown to be an important habitat for a number of macroinvertebrate taxa. In young and unstable streams, TRH was colonized mainly by Plecoptera whereas in more stable lake‐influenced streams Simuliidae dominated. Significant coarse woody debris (CWD) accumulations were not observed until after approximately 130 years of stream development had occurred when certain channel features, such as gravel bars, were stabilized by dead wood. Where dead wood was present, opportunistic wood taxa were abundant, even in the younger streams. However, a xylophagous species, Polypedilum fallax, was not recorded until streams were over 100 years old. Two‐way indicator species analysis (TWINSPAN) using presence/absence of macroinvertebrate taxa on TRH, initially divided streams into lake and non‐lake systems, but subsequent divisions were consistent with differences in stream age. TWINSPAN of macroinvertebrate assemblages on dead wood again highlighted differences in stream age. Canonical correspondence analysis indicated that bed stability and stream age were the most important environmental variables influencing macroinvertebrate distribution on TRH. Trailing riparian habitat was most abundant in moderately unstable streams where it facilitates invertebrate colonization. CWD contributes markedly to channel stabilization, provides habitat for invertebrate xylophages, and confers additional habitat complexity. Maximum levels of CWD are predicted to occur in non‐lake streams after approximately 300 years, but at least a further 100 years will be required in stable streams below lakes where dead wood entrainment is not enhanced by flooding, channel migration and bank undercutting. A conceptual model summarizing the role of TRH and CWD on stream development in Glacier Bay is presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Effects of stream enhancement on habitat conditions in five spring‐fed urban streams in Christchurch, New Zealand, were investigated. Stream enhancement consisted of riparian planting at three sites, and riparian planting and channel modifications at two sites, where a concrete dish channel and a timber‐lined channel were removed, and natural banks reinstated. Sites were surveyed prior to enhancement activities and 5 years after, and changes in riparian conditions (composition, horizontal and vertical cover), instream conditions (bank modifications, inorganic and organic material on the streambed), and hydraulic conditions (wetted perimeter, cross‐sectional area, depths and velocities) quantified. Enhanced sites generally had higher marginal vegetation cover, as well as increased overhanging riparian vegetation, reflecting planting of Carex sedges close to the water. Bed sediments changed at some sites, with the greatest change being replacement of a concrete channel with gravel and cobble substrate. Bryophyte cover declined at this site, reflecting loss of stable habitat where these plants grew. Bed sediments changed less at other sites, and cover of fine sediments increased in some enhanced sites, presumably from sediment runoff from nearby residential development. Filamentous algal cover decreased at one stream where shade increased, but increased in another stream where the removal of timber‐lined banks and creation of a large pond decreased shade. Stream enhancement increased variability in velocity at three of the five sites, but overall changes to stream hydraulics were small. Although enhancement activities altered the physical conditions of the streams, major changes occurred only to riparian vegetation and bank conditions. Lack of other major changes to instream physical conditions most likely reflected the limited range of channel morphology alterations undertaken. Moreover, the flat topography of Christchurch and naturally low stream discharge further constrained changes to instream physical conditions from enhancement activities. Sediment inputs from continuing urban development also negated the effects of adding coarse substrates. These over‐arching factors may constrain the success of future stream enhancement projects within Christchurch. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Round gobies have had significant impacts on benthic fish and invertebrate communities in nearshore habitats of the Great Lakes. As round gobies have become more abundant in lake habitats, there has been an expansion of their populations into tributary streams and rivers. We compared stream invertebrate and fish communities in New York tributaries to Lake Erie with round gobies present and absent. Four of six benthic invertebrate metrics differed between streams with and without round gobies. Streams with round gobies present had reduced Shannon diversity, EPT richness, and EPT/chironomid ratios, and increased macroinvertebrate density relative to streams without round gobies, but there was no difference in non-Diptera density, or total taxa richness. None of the four fish metrics examined differed between streams with and without round gobies. However, darters occurred in all streams lacking round gobies, but did not occur in any streams with round gobies. Comparisons with historical fish and macroinvertebrate distributional data support our suspicion of goby-induced community changes. In these New York streams, round gobies seem to have had significant impacts on invertebrate communities via their consumptive behavior, whereas the impacts on fish communities are less evident. If round gobies continue to expand their distribution inland, the resultant alterations in macroinvertebrate communities may impact the suitability of tributary streams as spawning and nursery habitat for several sport fish species and for energy dynamics in tributary streams.  相似文献   

5.
Headwater streams can constitute up to 80% of river channel length and are vulnerable to anthropogenic pressures due to their high connectivity to adjacent land, large relative catchment size and low dilution capacity. In these environments, unrestricted cattle access is a potentially significant cause of water quality deterioration, resulting from increases in stream bank erosion, riparian damage and sediment deposition among others. Several studies have reported improvements in the physico-chemical and hydromorphological conditions of streams following the elimination of cattle access; few, however, have focussed on the ecological impacts of such management practices. Here, such impacts are assessed. The study explores the short-term effects of cattle exclusion by comparing habitat conditions, sediment deposition and instream macroinvertebrate communities upstream and downstream of cattle access points prior to, and 1 year following exclusion via fencing. The long-term effects are also measured by reassessing a small stream catchment entirely fenced off from cattle access in 2008 under a dedicated management plan. In the short term, cattle exclusion led to a reduction in deposited sediment downstream of cattle access points and a related homogenisation of macroinvertebrate community structure between upstream and downstream of cattle access points. Increased abundances of specific indicator taxa (Ancylus fluviatilis, Glossosomatidae and Elmidae) in the fenced catchment following 9 years of exclusion highlight the long-term ecological benefits of such mitigation practices. These findings highlight the importance of incentivised agri-environment measures in reducing the negative impacts of cattle access to vulnerable aquatic ecosystems.  相似文献   

6.
Dredging or channelization has physically modified the majority (90%) of the 64 000 km of Danish stream network with substantial habitat degradation as a result. Analyses of physical habitat structure in streams, biota, catchment features and regional differences in hydrology, topography and geology have never been carried out in Denmark. Therefore, there is little knowledge of processes, interactions and patterns across the different scales. Physical habitats, catchment parameters and macroinvertebrates were sampled at 39 sites in three major river systems during summer and winter 1993. In‐stream physical conditions and catchment attributes affect the physical habitat structure in Danish lowland streams. Local differences in hydrology, land use, catchment topography and soil types correlated to the in‐stream physical habitat parameters. Local differences in hydrology and topography resulted in a separation of the Suså streams with respect to physical habitats. Mud deposition was pronounced at sites with low discharge and low near‐bed current velocity. Low mud cover was primarily associated with streams with high discharge located in pristine catchments. Stability in the streams was therefore closely linked to in‐stream deposition of fine sediment. Generally, macroinvertebrate community diversity increased as discharge increased. Mud cover negatively affected macroinvertebrate diversity and EPT taxon richness. Regional physical habitat structure and macroinvertebrate community structure were primarily associated with local variations in hydrology, geology and topography. Low‐energy streams were primarily located in the Suså river system and the high‐energy streams in the Gudenå and Storå river systems, leading to extensive deposition of mud during summer. Streams in the Suså river system generally had lower diversity and species richness compared to the streams in the Gudenå and Storå river systems. Hydraulic conditions and substratum dynamics in streams are important when managing lowland streams. This study therefore analysed interactions and parameter correlations between physical habitats, stream stability and catchment attributes as well as macroinvertebrate community structure across multiple scales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A collaborative study among three nations (France, Belgium, Netherlands) along the Meuse River developed a consistent approach for collecting and interpreting macroinvertebrate data. Specific mesohabitats were sampled in 16 locations along an 800‐km stretch of this lowland regulated river. The objective was to assess the ‘river health’ using macroinvertebrate communities as indicators of biological and ecological variation in space. The main changes in assemblages were investigated using multimetric and multivariate approaches. The authors examined relationships between faunal variations and both physico‐chemical gradients and man‐made disturbances. We related species traits to faunal changes and habitat characteristics. Both a gradual shift from a macroinvertebrate assemblage dominated by insects to a community dominated by crustaceans and molluscs and a drastic decrease in biotic index values were observed along the longitudinal gradient. Taxa were distributed according to oxygen, nitrate and ammonium concentrations, pH, conductivity and summer hydraulic conditions. But major faunal differences among sites could not be explained simply by physico‐chemical variables. The trait analysis underlined the role of temporary habitats in structuring the summer macroinvertebrate community of sites of the uppermost French sector, which supported the most diverse community in terms of trait combination. Downstream the macroinvertebrate community exhibited a more simple and less stable functional organization. We concluded that the Meuse River exhibited both a high biodiversity and a ‘reasonably good’ water quality in the upper reaches. Two transition zones highlighted the influence of a high degree of human impact on stream integrity. Regulation for navigation, ship traffic and heavily polluted effluent discharges influenced instream conditions via multiple processes determining a decline of both habitat stability and diversity. However, the rare occurrence of habitat‐sensitive species in the lower reaches indicated that a partial recovery of communities may be predicted if restoration and protection of disturbed (especially riparian) habitats are fulfilled. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Decades of anthropogenic pressure have harmed riverscapes throughout North America by degrading habitats and water quality and can result in the extirpation of sensitive aquatic taxa. Local stream restoration projects have increased in frequency, but monitoring is still infrequent. In 2010, Kickapoo Creek in East Central Illinois was subjected to a stream restoration project that included implementation of artificial riffles, riprap, scouring keys, and riparian vegetation. We monitored the restoration efforts for 6 years after the restoration through annual sampling efforts at restored and reference sites to determine changes in habitat and fish assemblage using standard habitat sampling and electrofishing techniques. We observed distinct temporal and spatial shifts in physico‐chemical parameters along with changes in fish community structure. Although biotic integrity remained moderately low in reference assemblages, restored reaches showed 3‐year delay in response to restoration, with biotic integrity positively linked to additional instream habitat and altered channel morphology. Larger substrate sizes, submerged terrestrial vegetation, and newly formed scour pools along with reduced siltation were found in the restored sites, in contrast to the reference sites. These changes resulted in increased species diversity, reduced number of opportunistic species and consequently an overall increase in health of fish communities. We also observed recruitment of habitat specialists and increase in species with reproductive strategies that rely on complex substrates. The results of this study highlight some of the complex dynamics driving reach‐scale restoration projects. We demonstrate the usefulness of structural restoration as a management tool to increase biotic integrity through long‐term alteration of critical habitat. The delay in the response of species to the restoration efforts emphasizes the need for long‐term continuous temporal and spatial monitoring.  相似文献   

9.
‘River widenings’ are commonly used in river restoration to allow channel movement within a spatially limited area. Restoration seeks to restore fluvial processes and to re‐establish a more natural riparian community. This study investigates the performance of five river widenings in Switzerland, focusing on the re‐establishment of riparian (semi‐)terrestrial habitats and species, and highlights some factors that seem to influence their performance. The restoration projects are compared with pre‐restoration conditions and near‐natural conditions, which are assumed to represent the worst‐ and best‐case conditions along a gradient of naturalness. Fuzzy ordination of vegetation data and calculation of landscape metrics based on habitat maps revealed marked differences between the degree of naturalness achieved by each individual restoration project. However, in general river widenings were found to increase the in‐stream habitat heterogeneity and enhanced the establishment of pioneer habitats and riparian plants. Analyses of species pools based on a hierarchic list of indicator species and correspondence analysis showed that the ability of river widenings to host typical riparian species and to increase local plant diversity strongly depends on the distance to near‐natural stretches. Species dispersal and establishment might be hampered by decisions taken outside the scope of the restoration project. Therefore we conclude that action on the catchment scale is needed to maximize the benefits of local management. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
We investigated interactions of riparian vegetative conditions upon a suite of channel morphological variables: active channel width, variability of width within a reach, large wood frequency, mesoscale habitat distributions, mesoscale habitat diversity, median particle size and per cent fines. We surveyed 49 wadeable streams, 45 with low levels of development, throughout the Upper Little Tennessee River Basin in the Southern Appalachians. Conversion of riparian forest to grass has reduced aquatic habitat area (quantified by active channel width), channel width variability, wood frequency, mesoscale habitat diversity and obstruction habitat (wood and rock jams), and such conversion has increased the fraction of run and glide habitat. Channels with grassy riparian zones were only one‐third to three‐fifths of the width of channels with forested riparian zones, and channels with grassy or narrow forested riparian zones were nearly devoid of wood. Particle size metrics were strongly affected by stream power and agricultural cover in the basin, but the data suggest that elimination of riparian forest reduces median bed particle size. Results indicate that even modest increases in the extent and width of forested riparian buffers would improve stream habitat conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Instream wood promotes habitat heterogeneity through its influence on flow hydraulics and channel geomorphology. Within the Columbia River Basin, USA, wood is vital for the creation and maintenance of habitat for threatened salmonids. However, our understanding of the relative roles of the climatic, geomorphic, and ecological processes that source wood to streams is limited, making it difficult to identify baseline predictions of instream wood and create targets for stream restoration. Here, we investigate how instream wood frequency and volume differ between seven sub‐basins of the interior Columbia River Basin and what processes shape these differences within these sub‐basins. We collected data on wood volume and frequency, discharge and stream power, and riparian and watershed forest structure for use in modelling wood volume and frequency. Using random forest models, we found that mean annual precipitation, riparian tree cover, and the individual watershed were the most important predictors of wood volume and frequency. Within sub‐basins, we used linear models, finding that some basins had unique predictors of wood. Discharge, watershed area, or precipitation often combined with forest cover, riparian conifer, and/or large tree cover in models of instream large wood volume and frequency. In many sub‐basins, models showed at least one hydrologic variable, indicative of transport competence and one ecological variable, indicative of the reach or upstream watershed's capability to grow measurable instream wood. We conclude that basin‐specific models yield important insights into the hydrologic and ecological processes that influence wood loads, creating tractable hypotheses for building predictive models of instream wood. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Up to now, most lowland stream restoration projects were unsuccessful in terms of ecological recovery. Aiming to improve the success of stream restoration projects, a novel approach to restore sandy‐bottom lowland streams degraded by channel incision was launched, consisting of the addition of sand to the stream channel in combination with the introduction of coarse woody debris. Yet it remained unknown whether this novel measure of sand addition is actually effective in terms of biodiversity improvements. The aim of the present study was therefore to evaluate if sand addition can improve hydromorphological stream complexity on the short term leading to an increase in macroinvertebrate biodiversity. To this end, particle transport, water depth, current velocity, dissolved oxygen dynamics, and sediment composition were measured. The response of the macroinvertebrate community composition was determined at different stages during the disturbance and short‐term recovery process. Immediately downstream the sand addition site, transport and sedimentation of the sand were initially intense, until an equilibrium was reached and the physical conditions stabilized. The stream section matured fast as habitat formation took place within a short term. Macroinvertebrate diversity decreased initially but recovered rapidly following stabilization. Moreover, an increase in rheophilic taxa was observed in the newly formed habitats. Thus, although sand addition initially disturbed the stream, a relatively fast physical and biological recovery occurred, leading to improved instream conditions for a diverse macroinvertebrate community, including rheophilic taxa. Therefore, we concluded that sand addition is a promising restoration measure for incised lowland streams.  相似文献   

13.
Composition and structure of macroinvertebrate communities were documented in relation to hydrochemical variables over a 10‐month period in four headwater tributaries of the Futaleufú River, northwestern Chubut, Argentina. The streams are located along the strong rainfall gradient that decreases from west to east and they have different basin features. At Blanco and Baggilt streams, riparian vegetation consisted primarily of native Nothofagus forest, while in the Nant y Fall and Rifleros, basins with a long legacy of domestic grazing, the introduced Salix fragilis was the dominant riparian species. Macroinvertebrate species richness, density, and biomass were similar among rivers; however, biomass of shredders was highest in the Nothofagus forested streams and collector‐filterers were significantly higher in Salix fragilis‐bordered rivers. Water temperatures were higher in non‐native Salix sites than in the native or mixed forested sites. Canonical community analysis indicated community composition was related to geomorphic attributes of the rivers, especially slope, basin height (elevation change), distance to the source, substratum size, and Salix coverage. Moreover, seasonally dynamic variables, rainfall and water temperature were good community predictors. Land‐use change (conversion from Nothofagus to pastures and the Salix fragilis invasion in the riverbanks of pasture‐dominated catchments) was interactive with natural stream attributes as determinants of macroinvertebrate distribution and abundance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Droughts are affecting an increasing number of lotic ecosystems worldwide due to the combined effects of climatic and anthropogenic pressures. Unlike naturally intermittent rivers, where the drying phase is a part of the annual flow regime, water scarcity in Alpine rivers represents a relatively recent phenomenon and, therefore, a major threat for the biodiversity of these lotic ecosystems. However, Alpine stream community response to drought is still poorly investigated. Here, we assess the recovery of macroinvertebrates in two Alpine streams after a supraseasonal drought. As water returned, a total of 10 sampling sessions were carried out, and temporal patterns in diversity, density, and taxonomic composition of benthic communities, as well as in the percentage of functional feeding groups, were investigated. We found that the resistance of invertebrate communities in Alpine streams is generally low: drought markedly reduced the diversity and density of macroinvertebrates. Conversely, our results suggest that the passive dispersal by drift from the upstream river sections seems the most probable mechanism promoting the post‐drought recovery. Nevertheless, this resilience ability appears to be stream specific and influenced by intrinsic stream characteristics, including the flow permanence and distance from the nearest upstream perennial reach. This work sheds light on the ecological consequences of droughts on macroinvertebrate communities. As flow intermittency in Alpine areas is expected to intensify under current global change scenarios, results of this study provide important information to predict changes in the taxonomic composition and diversity of macroinvertebrate communities.  相似文献   

15.
This study quantified the unique variation in stream fish and habitat and a land use disturbance index (LDI) at a variety of spatial scales: catchment, eight riparian polygons that varied in width and length (e.g. 50 m to all upstream reaches), upstream polygons of 1.6 and 3.2 km and the residual upland area of each site watershed not accounted for by each polygon. The analyses confirmed a hockey stick‐shaped relationship between the fish community and the LDI, with sensitive species only present below an LDI of 11. The largest variation for most metrics was explained by the largest polygons, suggesting that local riparian conditions were not as important predictors of stream condition. LDI in upland areas, where zero‐order streams occur, was also an important predictor of fish biomass and taxa richness. Contrary to expected, additive models with both catchment and riparian corridors provided minimal increases in predictive power, and no improvement in model performance occurred when data sets were stratified into sites below the LDI threshold. Finally, there was considerable covariation in the template and stressor predictor variables that made it difficult to quantify the unique variation in biological and physical responses accounted for by land use. That the 1600‐m proximal polygon provided the best predictor of the fish community and temperature is supportive of there being some proximal effects of land use. Overall, our findings suggest that stream management must consider processes that occur in the entire upstream catchment and the entire riparian corridor, including the headwaters for success. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Actions are being developed to address the adverse consequences of engineering works on large European rivers by developing and implementing restoration activities in order to enhance the functionality and biodiversity of fluvial hydrosystems. However, as has frequently been mentioned in the scientific literature, quantitative and qualitative evaluation of the project benefits, if any, and their sustainability are hindered by the difficulty in assessing the responses of aquatic and riparian communities to the methods employed. A case study was conducted on a by‐passed section of the Upper Rhine River (France and Germany) to investigate the effects of instream flow increase and gravel augmentation on selected aquatic and riparian communities (macroinvertebrates, macrophytes, and riparian plants). This paper presents the results of a 6‐year interdisciplinary, before‐after control‐impact design monitoring study. The complexity of the study lies in carrying out a separate assessment of the cumulative effects on a site‐based, project‐specific basis. The results showed that (a) the instream flow increase resulted in greater richness of macrophyte species in the newly created backwaters, (b) the artificial gravel bar favoured the recruitment of pioneer species, including invasive species, although gravel redistribution by floods prevented their development, and (c) gravel augmentation tended to promote the taxonomic richness of macroinvertebrate communities with the appearance of species adapted to the new substrate areas. These findings should help to fill the knowledge gaps in large‐scale restoration and contribute key responses to the most frequently arising issues in this area, especially those concerning the efficiency and sustainability of river restoration projects.  相似文献   

17.
Pulsed salt tracer injections (salt slugs) are widely used for measuring discharge in streams, particularly in small streams. However, salt slug usage in stream ecology studies is limited, possibly due to concerns that salt injections may affect biotic results. We used salt slug measurements concomitantly with macroinvertebrate sampling over the course of a summer field season and show that the realistic use of salt slugs to measure discharge at our sites was benign with respect to several common biotic community metrics. Salt slug discharge measurements may warrant more usage as a component of stream ecology studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In Portland (Oregon, USA), restoration actions have been undertaken at the watershed scale (e.g. revegetation and stormwater management) to improve water quality and, where water quality and quantity are adequate at the reach scale, to increase habitat heterogeneity. Habitat enhancement in urban streams can be important for threatened species, but challenging, because of altered catchment hydrology and urban encroachment on floodplains and channel banks. To evaluate reach‐scale restoration projects in the Tryon Creek watershed, we sampled benthic macroinvertebrates and conducted habitat quality surveys pre‐project and over 4 years post‐project. Species sensitive to pollution and diversity of trophic groups increased after restoration. Taxonomic diversity increased after restoration but was still low compared with reference streams. We found no significant changes in trait proportions and functional diversity. Functional diversity, proportion of shredders and semivoltine invertebrates were significantly higher in reference streams than in the restored stream reaches. We hypothesized that inputs of coarse particulate organic matter and land use at watershed scale may explain the differences in biodiversity between restored and reference stream reaches. Habitat variables did not change from pre‐project to post‐project, so they could not explain community changes. This may have been partly attributable to insensitivity of the visual estimate methods used but likely also reflects the importance of watershed variables on aquatic biota—suggesting watershed actions may be more effective for the ecological recovery of streams. For future projects, we recommend multihabitat benthic sampling supported by studies of channel geomorphology to better understand stream response to restoration actions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Flow intermittence occurs in an increasing number of streams, due to climate change, local land‐use alteration and water abstraction. In particular, droughts represent a new element in Alpine river regimes, and their ecological consequences are poorly explored. We here used artificial streams to investigate the resilience of macroinvertebrates to drought in Alpine streams based on the presence of pools (i.e., refuges) and drift (i.e., recolonization). Three flumes were selected: 1 with permanent flowing water (Control), whereas the other 2 (Drift+Pools, Only Drift) were subjected to 2 consecutive drought‐rewetting phases. Moreover, to better monitor the recolonization pattern by drift, quantitative samples of drifting taxa were collected using an additional flume (Incoming Drift). The effects of droughts on benthic invertebrate communities and their recovery were assessed in terms of composition, structure, diversity, and stability. Droughts dramatically reduced the taxa richness, especially with regard to the most sensitive and specialized macroinvertebrates, such as Ephemeroptera, Plecoptera, and Trichoptera taxa. Macroinvertebrate assemblages of the flumes that experienced drying phases were dominated by few generalist taxa and showed a higher degree of dissimilarity. Overall, no significant differences were observed in relation to the presence of pools, suggesting a limited role of this habitat in the recovery process. This finding suggests that in shallow and fast‐flowing Alpine lotic ecosystems the drift rather than pool availability represents the main driver of the macroinvertebrate resilience to droughts and provides insights into factors that can facilitate the recovery of aquatic communities after droughts.  相似文献   

20.
Stream faunal assemblage structure is tied closely to hydrology and associated physiochemical properties. By altering natural flows, dams and their impoundments impact faunal assemblages over long distances. Although numerous studies have assessed the effect of dams on stream fauna, information is lacking for crayfishes. In this study, we characterized the effects of relatively large storage dams on crayfish assemblage structures. Over 2 years, we sampled three impounded and two unimpounded streams across two drainages in Alabama, United States, to identify biotic and abiotic factors correlated with crayfish assemblage metrics. Compared to impounded streams, unimpounded streams had greater habitat complexity (e.g., aquatic vegetation and woody debris), fewer predator fishes, lower minimum temperatures, and more variable discharges. These characteristics correlated with a higher density and diversity of crayfishes and smaller adults in impounded compared to unimpounded streams. Crayfish species assemblages differed between drainages, as did the biotic and abiotic factors affecting crayfish assemblages in each drainage, suggesting that these factors were species-specific in their effects. Additionally, analysis of land uses suggested that factors other than dams may have also contributed to the observed differences in assemblage structures between impounded and unimpounded streams. For instance, in the more urbanized drainage, crayfish assemblages were more similar between up and downstream sections in all streams, regardless of impoundment. Our results indicate that large dams alter stream crayfish assemblage structure, with potentially cascading effects in trophic and organic matter dynamics both up and downstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号