首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions between precipitation, streamflow and groundwater are very complex. In cold temperate regions characterized by harsh winters, winter streamflow is mainly derived from aquifers that are recharged in the spring, during snowmelt, and in the fall, when evapotranspiration is subdued. Despite this complexity, the modes and trends in the interannual variability of spring (April, May, June and July) streamflow and fall (August, September, October and November) precipitation and streamflow were compared to the modes and trends in the interannual variability of winter (December, January, February and March) streamflow in southern Quebec from 1950 to 2000. Results indicate that the variability modes are identical for all four of these hydro‐climatic variables: two modes (south‐east and east modes) on the south shore of the St. Lawrence River on either side of the 47°N and a single mode (south‐west mode) on the north shore. As for the trend, a significant increase in winter streamflow was observed on the north shore. This increase is comparable to that observed in spring streamflow, which suggests that winter streamflow on the north shore is mainly derived from groundwater recharge during the spring. Moreover, both spring and winter streamflows are positively correlated to the North Atlantic Oscillation climate index. On the south shore, south of the 47°N, a significant decrease was observed in the trend of the interannual variability of winter streamflow, this in spite of a significant increase in fall precipitation and streamflow. An increase in evaporation (decreased infiltration) due to a shift from forest cover to agricultural land cover in this region could account for this. However, fall precipitation and streamflow and winter streamflow are significantly correlated to the Atlantic Multidecadal Oscillation winter index. This correlation is negative with the first two variables but positive with the third. This study suggests that, in southern Quebec, the interannual variability of winter streamflow is mainly affected by spring recharge in non‐agricultural catchments (east and south‐west modes) and by farming in agricultural catchments (south‐east mode). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The aim of this study was to test three main hypotheses about the interannual variability of streamflow downstream from dams: (1) an almost similar long-term trend in interannual variability, (2) low variability of flow, and (3) its independence (no link) from climate variability. To test these hypotheses, the interannual variability of winter and spring streamflow downstream from three reservoirs (Gouin, Manouane, and Matawin) which induce an inversion of the natural cycle of streamflow (maximum flows in winter and minimum flows in spring) was compared to the interannual variability of streamflow in natural rivers (measured at the Matawin and Vermillon stations) over the period from 1932 to 2008 in the St-Maurice River watershed. As far as the interannual variability of flow is concerned, its long-term trend is not homogeneous downstream from the three reservoirs in both seasons. However, downstream from two reservoirs, changes in streamflow were observed to be different from those in natural rivers (no significant trend downstream from the Taureau reservoir, on the Matawin River, and significant decrease in spring flow downstream from the Manouane reservoir). Finally, coefficient of variation values for minimum flows are higher downstream from reservoirs than in natural rivers, despite the fact that watershed surface area is larger for regulated rivers than for natural ones. As for the link with climate variability, analysis of the correlation between climate variables (temperature and precipitation) and mean winter and spring daily streamflow reveals that winter streamflow downstream from the Taureau reservoir is not correlated with any climate variable, whereas spring streamflow is positively correlated with rainfall and negatively correlated with maximum temperature. Thus, downstream from reservoirs, the interannual variability of streamflow depends on climate during the spring, but not during winter.  相似文献   

3.
Precipitation in fall and winter is important to recharge aquifers in Northern California and the Pacific Northwestern United States, causing the baseflow in rivers ascend during the time when Chinook salmon (Oncorhynchus tshawytscha) construct redds. Herein, we evaluate the availability of spawning habitats under a constant streamflow common in regulated rivers against ascending baseflows patterned from free‐flowing rivers. A binomial logistic regression model was applied to predict the suitability of redd locations based on physical characteristics. Next, two‐dimensional hydrodynamic habitat models were developed at two locations representing a broad range of channel forms common in large rivers. Hydrodynamic and habitat models were leveraged together to simulate the quality, amount, and spatial distribution of spawning habitat at a series of individual flow rates, as well as the combined effect of those flow rates through a spawning season with ascending baseflows. Ascending baseflows increased the abundance of spawning habitat over individual streamflows at a site where the river channel is confined by levee‐like features. However, improvements were greater at an unconfined site that facilitated lateral connectivity and greater expansion of wetted channel area as streamflows increased. Ascending baseflows provided spatial separation in preferred habitats over a spawning season, which may reduce the risk of superimposition among runs or among species. Ascending baseflows provided a benefit across the range of hydrologic regimes in a 100‐year gauge record ranging from 20% to 122% improvements in habitat area over low streamflows that are currently used to manage for spawning habitat. Although replicating natural flow regimes in managed systems can be impossible or impractical, these results demonstrate that incorporating elements of the natural flow regime like ascending baseflows can benefit the restoration and conservation of riverine species.  相似文献   

4.
Fishery biologists are increasingly recognizing the importance of considering the dynamic nature of streams when developing streamflow policies. Such approaches require information on how flow regimes influence the physical environment and how those factors, in turn, affect species‐specific demographic rates. A more cost‐effective alternative could be the use of dynamic occupancy models to predict how species are likely to respond to changes in flow. To appraise the efficacy of this approach, we evaluated relative support for hypothesized effects of seasonal streamflow components, stream channel characteristics, and fish species traits on local extinction, colonization, and recruitment (meta‐demographic rates) of stream fishes. We used 4 years of seasonal fish collection data from 23 streams to fit multistate, multiseason occupancy models for 42 fish species in the lower Flint River Basin, Georgia. Modelling results suggested that meta‐demographic rates were influenced by streamflows, particularly short‐term (10‐day) flows. Flow effects on meta‐demographic rates also varied with stream size, channel morphology, and fish species traits. Small‐bodied species with generalized life‐history characteristics were more resilient to flow variability than large‐bodied species with specialized life‐history characteristics. Using this approach, we simplified the modelling framework, thereby facilitating the development of dynamic, spatially explicit evaluations of the ecological consequences of water resource development activities over broad geographic areas. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

5.
Natural streamflows play a critical role in stream ecosystems, yet quantitative relations between streamflow alteration and stream health have been elusive. One reason for this difficulty is that neither streamflow alteration nor ecological responses are measured relative to their natural expectations. We assessed macroinvertebrate community condition in 25 mountain streams representing a large gradient of streamflow alteration, which we quantified as the departure of observed flows from natural expectations. Observed flows were obtained from US Geological Survey streamgaging stations and discharge records from dams and diversion structures. During low‐flow conditions in September, samples of macroinvertebrate communities were collected at each site, in addition to measures of physical habitat, water chemistry and organic matter. In general, streamflows were artificially high during summer and artificially low throughout the rest of the year. Biological condition, as measured by richness of sensitive taxa (Ephemeroptera, Plecoptera and Trichoptera) and taxonomic completeness (O/E), was strongly and negatively related to the severity of depleted flows in winter. Analyses of macroinvertebrate traits suggest that taxa losses may have been caused by thermal modification associated with streamflow alteration. Our study yielded quantitative relations between the severity of streamflow alteration and the degree of biological impairment and suggests that water management that reduces streamflows during winter months is likely to have negative effects on downstream benthic communities in Utah mountain streams. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

6.
An approach is presented in this study to aid water‐resource managers in characterizing streamflow alteration at ungauged rivers. Such approaches can be used to take advantage of the substantial amounts of biological data collected at ungauged rivers to evaluate the potential ecological consequences of altered streamflows. National‐scale random forest statistical models are developed to predict the likelihood that ungauged rivers have altered streamflows (relative to expected natural condition) for five hydrologic metrics (HMs) representing different aspects of the streamflow regime. The models use human disturbance variables, such as number of dams and road density, to predict the likelihood of streamflow alteration. For each HM, separate models are derived to predict the likelihood that the observed metric is greater than (‘inflated’) or less than (‘diminished’) natural conditions. The utility of these models is demonstrated by applying them to all river segments in the South Platte River in Colorado, USA, and for all 10‐digit hydrologic units in the conterminous United States. In general, the models successfully predicted the likelihood of alteration to the five HMs at the national scale as well as in the South Platte River basin. However, the models predicting the likelihood of diminished HMs consistently outperformed models predicting inflated HMs, possibly because of fewer sites across the conterminous United States where HMs are inflated. The results of these analyses suggest that the primary predictors of altered streamflow regimes across the Nation are (i) the residence time of annual runoff held in storage in reservoirs, (ii) the degree of urbanization measured by road density and (iii) the extent of agricultural land cover in the river basin. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

7.
1 . INTRODUCTIONTheannualmeanclimatology ,seasonalcycleandinterannualvarietiescharacteristicofseasurfacetemperature (SST)andupper oceanheatcontentaswellastheirrelationshipinL30T63,thethirdgen erationoftheoceanic generalcirculationmodel(GCM )developedintheStat…  相似文献   

8.
We have examined streamflow variability in the Southern Appalachian region of the United States for the period 1950–2009. In particular, we have analysed the monthly discharge time series at two stations along the following rivers in North Carolina: (1) Little Tennessee River (LTR) near Prentiss and (2) French Broad River in Asheville. These two gauging stations are part of the Hydro‐Climatic Data Network (HCDN) system. The HCDN system was developed by the United States Geological Survey (USGS) to provide a long‐term database for tracking changes in flow and water quality of streams and rivers, with minimal human interventions. Using continuous wavelet transform (CWT), we have identified the dominant oscillatory modes in the monthly discharge data at these two rivers, and delineated the time intervals over which these modes may persist. It is found that in addition to the annual hydrologic cycle, the monthly discharge fluctuates at interannual timescales. These interannual variations may be linked to the Pacific North American (PNA) teleconnection pattern. Knowledge of the interannual periodicities may be useful for understanding long‐term streamflow variability in the Southern Appalachian region. Understanding patterns of streamflow variability may be important for water resources management operations in the surrounding area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The goal of the study was to compare the modes of management of seasonal floods for different dams and to constrain their impact on the relationship between climate variables and streamflow downstream from the dams. At the Rawdon dam, downstream from which the Ouareau River is characterized by a natural‐type regulated flow regime, a ‘type A’ flood management mode prevails, in which the same rainfall and/or snowmelt events account for seasonal floods both in the unregulated (natural) stretch of river upstream from the dam and in the river downstream from the dam. As a result, seasonal floods in the natural setting and downstream from the dam are nearly synchronous. In contrast, downstream from the Matawin dam (Matawin River), which produces an inversion‐type regulated flow regime, the prevalent flood management modes are of types B and D, whereby seasonal floods observed upstream and downstream from the dam are not caused by the same rainfall and/or snowmelt events and, as a result, are not synchronous. This difference in seasonal flood management modes affects the interannual variability of the magnitude of seasonal daily maximum flows related to the seasonal floods. Thus, the interannual variability of these flows downstream from the Matawin dam differs significantly from that of flows upstream. No correlation is observed between climate variables and streamflow downstream from the Matawin dam. This absence of correlation disappears gradually at the annual scale, at which streamflow is correlated with rainfall, as is observed upstream from the dam. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A 294-year streamflow record of the upper Kurshab River was inferred from tree-ring width chronology of Turkestan juniper from the Pamir-Alai Mountains of Kyrgyzstan. The reconstructed streamflow variations were consistent with other hydrometeorological reconstructions of northern Pakistan and western Tien Shan on a decadal timescale, which demonstrate both increased and decreased streamflow intervals and trends. The new reconstruction and other hydrometeorological series successfully captured the recent wetting trend of Central Asia. Wavelet analysis indicates that decadal and interannual cycles exist in the reconstructed streamflow, which may be linked to solar activity and the North Atlantic Oscillation.  相似文献   

11.
Quantifying hydrologic alteration in the Mississippi Alluvial Plain (MAP) of the south‐central United States is particularly difficult because of the lack of current reference, or even relatively undisturbed, streams and associated streamflow data. Impacts, such as water withdrawals for agriculture, weirs, dams, channelization, and other forms of regulation, within the MAP increased substantially beginning around 1960 suggesting that streamflow has since been altered. Using historical streamflow and climate data and explanatory variables, the U.S. Geological Survey developed random forest regression models to estimate expected reference monthly streamflows (pre‐1960) at 76 sites in the MAP and two adjacent Level III Ecoregions. To compensate for the lack of current reference stream sites in the study area, the pre‐1960 streamflow data were used as a surrogate to estimate current streamflow conditions without anthropogenic influence (inferring current reference conditions). Overall, nearly every site within the study area had less zero‐flow days than what historically has been observed and there were more low‐pulse spells. However, the frequency of floods remained relatively consistent.  相似文献   

12.
Erected in 1930, the Matawin Dam caused an inversion of the hydrologic regime of the Matawin River: snow‐melt water in spring (April to June) is stored in the reservoir and then released in winter (January to March) to feed the hydroelectric generating stations built downstream on the Saint‐Maurice River. Thus, heavy floods occur upstream from the dam in spring but downstream in winter. We compared the interannual and interdecadal variability of the heavy flood characteristics (magnitude, duration, frequency and variability) both upstream (spring floods) and downstream (winter floods) from the dam during the 1934–1994 period. This comparison revealed that the principal change observed downstream from the dam translates into a strong increase in the duration (in days) of heavy floods. The average duration of these floods quintupled. This change in duration occurred around the mid‐1960s and thus led to a significant decrease in the magnitude, frequency and variability of heavy floods. It also altered the relationship between the climate indices and these fundamental characteristics (magnitude, frequency and duration). Downstream from the dam, the magnitude and frequency are positively correlated to the Atlantic multidecadal oscillation (AMO), whereas upstream they are negatively correlated to the same index. However, the AMO index is negatively correlated to the duration downstream from the dam, whereas upstream this characteristic is no longer significantly correlated to any climatic index. Two factors have been invoked to explain this change observed downstream from the dam.
  • The cooling observed since the 1960s at the station located at the dam. However, this cooling was not observed on the scale of the entire watershed. This reduces its plausibility.
  • The increase in hydroelectric power production in the watershed after nationalization of hydroelectric power in 1962. This increase would be explained by the expansion of the market for hydroelectric power (national and international markets). Before nationalization, the hydroelectric power produced in the watershed was intended only for regional industries.
Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Understanding the extent to which natural streamflow characteristics have been altered is an important consideration for ecological assessments of streams. Assessing hydrologic condition requires that we quantify the attributes of the flow regime that would be expected in the absence of anthropogenic modifications. The objective of this study was to evaluate whether selected streamflow characteristics could be predicted at regional and national scales using geospatial data. Long‐term, gaged river basins distributed throughout the contiguous US that had streamflow characteristics representing least disturbed or near pristine conditions were identified. Thirteen metrics of the magnitude, frequency, duration, timing and rate of change of streamflow were calculated using a 20–50 year period of record for each site. We used random forests (RF), a robust statistical modelling approach, to develop models that predicted the value for each streamflow metric using natural watershed characteristics. We compared the performance (i.e. bias and precision) of national‐ and regional‐scale predictive models to that of models based on landscape classifications, including major river basins, ecoregions and hydrologic landscape regions (HLR). For all hydrologic metrics, landscape stratification models produced estimates that were less biased and more precise than a null model that accounted for no natural variability. Predictive models at the national and regional scale performed equally well, and substantially improved predictions of all hydrologic metrics relative to landscape stratification models. Prediction error rates ranged from 15 to 40%, but were ≤25% for most metrics. We selected three gaged, non‐reference sites to illustrate how predictive models could be used to assess hydrologic condition. These examples show how the models accurately estimate pre‐disturbance conditions and are sensitive to changes in streamflow variability associated with long‐term land‐use change. We also demonstrate how the models can be applied to predict expected natural flow characteristics at ungaged sites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, the combined effects of hydrological and chemical stressors on benthic macroinvertebrates were evaluated in order to explore the response of the biological community to multiple stressors. The Adige River, located in the south‐eastern Alps, was selected as a case study because representative of the situation of a large river in which the variety of stressors present in the Alpine region act simultaneously. As expected, streamflow showed a seasonal pattern, with high flows in the spring–summer period; however, locally, the natural hydrological regime was altered by the presence of hydropower systems, which chiefly affected low flows. Multivariate analysis showed seasonal and spatial patterns in both chemical and hydrological parameters with a clear gradient in the concentration of nitrate, personal care, and pharmaceutical products moving from headwaters to the main stem of the river. The macroinvertebrate community composition was significantly different in summer and winter and between up and downstream sites. Streamflow alteration chiefly due to water use by hydropower affected community composition but not richness or diversity. Gammarus sp., Hirudinea, and Psychomyia sp., were positively correlated with flow variability, increasing their densities in the sites with higher streamflow variability because of hydropeaking. The results obtained in this study show that the composition of the macroinvertebrate community responded to seasonality and to changes in the main stressors along the river and highlights the importance of the spatial and temporal variability of stressors in this Alpine river. Taking into account, this variability will help the decision‐making process for improving basin management.  相似文献   

15.
Over the last few decades as hydrologists have slowly raised their line of sight above the watershed boundary, it has become increasingly recognised that what happens in the atmosphere, as a major source of moisture for the terrestrial branch of the hydrological cycle, can strongly influence river dynamics at a range of spatial and temporal scales. Notwithstanding this, there is still a tendency for some in the river research community to restrict their gaze to the river channel or floodplain. However, Geoff Petts, the person to which this special issue is dedicated, understood well and widely encouraged a holistic view of river catchment processes. This included an acknowledgment of the role of climate, in its broadest sense, in shaping what happens within and without the river channel. The purpose of this paper therefore is to offer a broad overview of the role of some aspects of climate science in advancing knowledge in river research. Topics to be addressed include the role of climate in influencing river flow regimes, a consideration of the large‐scale climate mechanisms that drive hydrological variability within river basins at interannual to decadal timescales and atmospheric rivers and their link to surface hydrology. In reviewing these topics, a number of key knowledge gaps have emerged including attributing the causes of river flow regime changes to any one particular cause, the nonstationary and asymmetric forcing of river regimes by modes of climate variability and establishing links between atmospheric rivers, and terrestrial river channel processes, fluvial habitats, and ecological change.  相似文献   

16.
Although small and medium‐size dams are prevalent in North America, few studies have described their year‐round impacts on the thermal regime of rivers. The objective of this study was to quantify the impacts of two types of dams (run‐of‐river, storage with shallow reservoirs) on the thermal regime of rivers in eastern Canada. Thermal impacts of dams were assessed (i) for the open water period by evaluating their influence on the annual cycle in daily mean water temperature and residual variability and (ii) for the ice‐covered winter period by evaluating their influence on water temperature duration curves. Overall, results showed that the run‐of‐river dam (with limited storage capacity) did not have a significant effect on the thermal regime of the regulated river. At the two rivers regulated by storage dams with shallow reservoirs (mean depth < 6 m), the annual cycle in daily mean water temperature was significantly modified which led to warmer water temperatures in summer and autumn. From August to October, the monthly mean water temperature at rivers regulated by storage dams was 1.4 to 3.9°C warmer than at their respective reference sites. During the open water period, the two storage dams also reduced water temperature variability at a daily timescale while increased variability was observed in regulated rivers during the winter. Storage dams also had a warming effect during the winter and the winter median water temperature ranged between 1.0 and 2.1°C downstream of the two storage dams whereas water temperature remained stable and close to 0°C in unregulated rivers. The biological implications of the altered thermal regimes at rivers regulated by storage dams are discussed, in particular for salmonids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Temporal variability in water temperature plays an important role in aquatic ecosystems, yet the thermal regime of streams has mainly been described in terms of mean or extreme conditions. In this study, annual and diel variability in stream water temperature was described at 135 unregulated, gauged streams across the USA. Based on magnitude, amplitude and timing characteristics of daily water temperature records ranging from 5 to 33 years, we classified thermal regimes into six distinct types. This classification underlined the importance of including characteristics of variability (amplitude and timing) in addition to aspects of magnitude to discriminate thermal regimes at the continental scale. We used a classification tree to predict thermal regime membership of the six classes and found that the annual mean and range in the long‐term air temperature average along with spring flows were important variables defining the thermal regime types at the continental scale. This research provides a framework for a comprehensive characterization of the thermal regimes of streams that could provide a basis for future assessment of changes in water temperature caused by anthropogenic activities such as dams, land use changes and climate change. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In achieving the final objective of the European Water Framework Directive, the evaluation of the ‘hydrological status’ of a water body in a catchment is of the utmost importance. It represents the divergence of the actual hydrological regime from its ‘natural’ condition and may thus provide crucial information about the ecological status of a river. In this paper, a new approach in evaluating the hydrological status of a temporary river was tested. The flow regime of a river has been classified through the analysis of two metrics: the permanence of flow and the predictability of no‐flow conditions that were evaluated on monthly streamflow data. This method was applied to the Candelaro river basin (Puglia, Italy) where we had to face the problem of limited data availability. The Soil and Water Assessment Tool model was used when streamflow data were not available, and a geographic information system procedure was applied to estimate potential water abstractions from the river. Four types of rivers were identified whose regimes may exert a control on aquatic life. By using the two metrics as coordinates in a plot, a graphic representation of the regime can be visualized in a point. Hydrological perturbations associated with water abstractions, point discharges and the presence of a reservoir were assessed by comparing the position of the two points representing the regime before and after the impacts. The method is intended to be used with biological metrics in order to define the ecological status of a stream, and it could also be used in planning the ‘measures’ aimed at fulfilling the Water Framework Directive goals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Wang  Menghao  Jiang  Shanhu  Ren  Liliang  Xu  Chong-Yu  Wei  Linyong  Cui  Hao  Yuan  Fei  Liu  Yi  Yang  Xiaoli 《Water Resources Management》2022,36(4):1377-1392

Under current global change, the driving force of evolution of drought has gradually transitioned from a single natural factor to a combination of natural and anthropogenic factors. Therefore, widely used standardised drought indices based on assumption of stationarity are challenged and may not accurately assess characteristics of drought processes. In this study, a nonstationary standardised streamflow index (NSSI) that incorporates climate and reservoir indices as external covariates was developed to access nonstationary hydrological drought. The first step of the proposed approach is to apply methods of trend and change point analysis to assess the nonstationarity of streamflow series to determine type of streamflow regime, that is, the natural and altered regime. Then, different nonstationary models were constructed to calculate the NSSI by selecting climate indices as covariates for streamflow series with natural regime, and climate and reservoir indices as covariate for streamflow series with altered regime. Four stations in the upper reaches of the Huaihe River basin, China, were selected to examine the performance of the proposed NSSI. The results indicated that Dapoling (DPL), Changtaiguan (CTG), and Xixian (XX) stations had natural streamflow regimes, while the Nanwan (NW) station had an altered regime. The global deviances of the optimal nonstationary models were 17 (2.2%), 18 (2.9%), 26 (4.0%), and 22 (3.5%) less than those of stationary models for DPL, CTG, NW, and XX stations, respectively. Especially, for the NW station influenced by reservoir regulations, the frequency of slight drought and moderate drought of NSSI was 12.8% lower than and 13.1% greater than those of SSI, respectively. Overall, the NSSI that incorporates the influence of climate variability and reservoir regulations provided more reliable assessment of hydrological drought than the traditional SSI.

  相似文献   

20.
Regime-based approach recently becomes an important strategy while considering aquatic ecosystems in environmental flow management. The key element for supporting this strategy is long streamflow data which is usually not available for determining natural flow regimes. This study uses a back-propagation network to estimate ungauged natural flow regimes. A set of the upper reaches of Taiwan’s 42 flow stations with non-human control streamflow and at least 20 years daily flow data is used to quantify the natural flow regimes using 31 Indicators of Hydrologic Alteration (IHA). Watershed geomorphologic characteristic factors and rainfall parameters are used to classify homogeneous flow regime areas. The results show that there are three types of flow regimes from the flow stations, and each group of indicators in the IHA has different correlations with different geomorphologic characteristic factors and rainfall parameters. The results of using an artificial neural network model to estimate IHA show that the group average percent error fell from 21 % to 8 % and the average correlation coefficient was over 0.7, indicating that the model presented in this study is able to accurately estimate the natural flow regime in ungauged stations. Instead of predicting daily streamflow, this study estimates indicator values for ease of ecological water resources management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号