首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Compact urbanization is the main strategy for sustainable urban development. However, it is yet unclear whether compact urban forms are ecologically more favourable than dispersed ones. In this paper, we studied the effects of urban sprawl on the riparian vegetation condition in one of the most degraded watersheds in the Buenos Aires metropolitan area, Argentina. We conducted random sampling of the riparian vegetation at sites along streams in the basin and assessed urban indicators at the reach and sub‐watershed scales for each of those sites in a geographic information system: urban area, impervious surface, population density and two landscape metrics of dispersion. The indicators assessed explained a high proportion of the variability of the vegetation response variables, thereby confirming the importance of urban sprawl pressure in shaping riparian communities in fluvial ecosystems. Dispersed urbanization had more positive than negative effects on the vegetation in the study area. Riverbanks associated with dispersed urbanization had more plant species, including exotics, when urban sprawl was assessed at the local scale. At the sub‐watershed scale, dispersed urbanized areas were richer in native plants and most of the functional groups, and poorer in exotic species. The model of the compact city, including bio‐corridors along watercourses, has been proposed for the Buenos Aires conurbation process for the next decades. Our results showed that the quality of existing river corridors across the compact matrix was not desirable and best practices for redesigning a more sustainable landscape structure are necessary, including the restoration of habitats for wetland species. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Rivers with a natural flow regime strongly influence the dynamics of riparian plant communities through hydrological and geomorphological processes. In this study, associations between fluvial landforms and vegetation are investigated on three near‐natural rivers in the Czech Republic a decade after a 500‐year return period flood in July 1997. This extreme disturbance destroyed the anthropogenically modified river channels and created suitable conditions for a range of ecosystems with high diversity and ecological stability. Field surveys were conducted on fluvial landforms (bars, islands, banks, floodplains and terraces) along three ‘renaturalized’ rivers, where no technical modifications had subsequently been made to their channels outside urban areas and the floodplains had been left in a post‐flood state. Vegetation species abundance and 13 environmental variables (topographical, hydrological and soil) were investigated in summer 2007, 10 years after the extreme flood disturbance. The results suggest that the recently created fluvial geomorphic forms are key environmental determinants of riparian vegetation distribution patterns. A range of statistical analyses illustrate that some plant species show predictable patterns of occurrence that correspond with the fluvial forms, supporting a fourfold grouping of herbaceous and woody species and the identification of typical plant communities associated with gravel bars, islands, banks, floodplains and terraces. An investigation of the species richness found on different fluvial landforms showed that the highest number of species occurred on the floodplain and decreased gradually towards the channel bed and towards terraces. Investigation of existing conditions in reaches of rivers with natural dynamics of fluvial processes provides valuable information that can be used as an effective tool for planning restoration strategies and precise management. However, the most important finding of this study is the remarkable establishment of complex river corridor vegetation–landform associations within 10 years of a 500‐year flood that removed the heavily cultivated landscape that had existed before the event. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The effects of river damming on geomorphic processes and riparian vegetation were evaluated through field studies along the regulated Green River and the free‐flowing Yampa River in northwestern Colorado, USA. GIS analysis of historical photographs, hydrologic and sediment records, and measurement of channel planform indicate that fluvial processes and riparian vegetation of the two meandering stream reaches examined were similar prior to regulation which began in 1962. Riparian plant species composition and canopy coverage were measured during 1994 in 36, 0.01 ha plots along each the Green River in Browns Park and the Yampa River in Deerlodge Park. Detrended correspondence analysis (DCA) of the vegetation data indicates distinctive vegetation differences between Browns Park and Deerlodge Park. Canonical correspondence analysis (CCA) indicates that plant community composition is controlled largely by fluvial processes at Deerlodge Park, but that soil chemical rather than flow related factors play a more important role in structuring plant communities in Browns Park. Vegetation patterns reflect a dichotomy in moisture conditions across the floodplain on the Green River in Browns Park: marshes with anaerobic soils supporting wetland species (Salix exigua, Eleocharis palustris, Schoenoplectus pungens, and Juncus nodosus) and terraces having xeric soil conditions and supporting communities dominated by desert species (Seriphidium tridentatum, Sarcobatus vermiculatus, and Sporobolus airoides). In contrast, vegetation along the Yampa River is characterized by a continuum of species distributed along a gradual environmental gradient from the active channel (ruderal species such as Xanthium struminarium and early successional species such as S. exigua, Populus deltoides subsp. wislizenii, and Tamarix ramossissima) to high floodplain surfaces characterized by Populus forests and meadow communities. GIS analyses indicate that the channel form at Browns Park has undergone a complex series of morphologic changes since regulation began, while the channel at Deerlodge Park has remained in a state of relative quasi‐equilibrium with discharge and sediment regimes. The Green River has undergone three stages of channel change which have involved the transformation of the historically deep, meandering Green River to a shallow, braided channel over the 37 years since construction of Flaming Gorge Dam. The probable long‐term effects of channel and hydrologic changes at Browns Park include the eventual replacement of Populus‐dominated riparian forest by drought tolerant desert shrublands, and the enlargement of in‐channel fluvial marshes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Riparian vegetation development and macroinvertebrate assemblages were studied in 16 streams formed between 35 and 230 years ago, following glacial recession in Glacier Bay National Park, southeast Alaska. Riparian vegetation established most rapidly in streams where flow variation in downstream reaches was buffered by a lake. Riparian vegetation development was positively correlated with lower bank stability, but was independent of stream age. Roots and branches of riparian vegetation trailing into streams (trailing riparian habitat—TRH) were shown to be an important habitat for a number of macroinvertebrate taxa. In young and unstable streams, TRH was colonized mainly by Plecoptera whereas in more stable lake‐influenced streams Simuliidae dominated. Significant coarse woody debris (CWD) accumulations were not observed until after approximately 130 years of stream development had occurred when certain channel features, such as gravel bars, were stabilized by dead wood. Where dead wood was present, opportunistic wood taxa were abundant, even in the younger streams. However, a xylophagous species, Polypedilum fallax, was not recorded until streams were over 100 years old. Two‐way indicator species analysis (TWINSPAN) using presence/absence of macroinvertebrate taxa on TRH, initially divided streams into lake and non‐lake systems, but subsequent divisions were consistent with differences in stream age. TWINSPAN of macroinvertebrate assemblages on dead wood again highlighted differences in stream age. Canonical correspondence analysis indicated that bed stability and stream age were the most important environmental variables influencing macroinvertebrate distribution on TRH. Trailing riparian habitat was most abundant in moderately unstable streams where it facilitates invertebrate colonization. CWD contributes markedly to channel stabilization, provides habitat for invertebrate xylophages, and confers additional habitat complexity. Maximum levels of CWD are predicted to occur in non‐lake streams after approximately 300 years, but at least a further 100 years will be required in stable streams below lakes where dead wood entrainment is not enhanced by flooding, channel migration and bank undercutting. A conceptual model summarizing the role of TRH and CWD on stream development in Glacier Bay is presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Riparian plant communities are shaped by gradients of disturbance intensity and frequency and resource availability. Reservoir operation can alter the composition and abundance of riparian vegetation by changing the flood regime and by trapping fine sediments and associated nutrients within the reservoir system. We examined differences in herbaceous species richness, abundance and composition in Populus‐Salix stands along an unregulated and regulated reach of a river in semi‐arid Arizona, contrasted flood inundation frequency and edaphic conditions (soil moisture, nutrients and texture) between the reaches, and interpreted the vegetation differences in light of observed differences in environmental conditions. Flooding frequency was similar between reaches, but the proportion of fine textured soils in the unregulated reach was nearly double that of the regulated reach and soil nutrient levels were up to three times higher in the unregulated reach. Herbaceous cover and richness were consistently lower in the regulated reach, with between‐reach differences greatest during dry seasons. These patterns suggest that an edaphic‐based change in resource availability is the principal pathway by which river damming is altering herbaceous vegetation in this system. Our results demonstrate that sediment transport within riparian corridors is important for maintenance of herbaceous communities and that restoration of flow regimes alone may be insufficient to restore herbaceous flora on some regulated reaches. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Riparian zones are important for their contribution to biodiversity and ecosystem services, especially in the western USA where riparian zones occupy a small proportion of the landscape but support a majority of the biodiversity. However, few accurate datasets of riparian zone locations are available over broad spatial extents, and cost efficient methods to map riparian zones at fine spatial resolutions do not currently exist. We created a multi‐scale, hierarchical, and process‐guided method to map the location of riparian zones using readily available, national datasets. We demonstrate the applicably of this straightforward method in the Southern Rockies Ecoregion, where we mapped both current riparian zones (the riparian zone that is not strongly modified by human land uses and is assumed to support natural riparian vegetation) and potential riparian zones (the area that would likely support natural riparian vegetation in the absence of human activity). The overall accuracy of our method for potential and current riparian zones was 92%. The Southern Rockies Ecoregion is composed of 3.1% (±0.3%) potential and 2.5 (±0.2%) current riparian zones, indicating that roughly 21.0% (±0.5%) of riparian zones have been removed by human activities. This modelling approach can be used to create detailed maps of riparian zones to inform regional conservation and management decision‐making, and the methods can be applied to different regions at multiple scales from small watersheds to a national analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
‘River widenings’ are commonly used in river restoration to allow channel movement within a spatially limited area. Restoration seeks to restore fluvial processes and to re‐establish a more natural riparian community. This study investigates the performance of five river widenings in Switzerland, focusing on the re‐establishment of riparian (semi‐)terrestrial habitats and species, and highlights some factors that seem to influence their performance. The restoration projects are compared with pre‐restoration conditions and near‐natural conditions, which are assumed to represent the worst‐ and best‐case conditions along a gradient of naturalness. Fuzzy ordination of vegetation data and calculation of landscape metrics based on habitat maps revealed marked differences between the degree of naturalness achieved by each individual restoration project. However, in general river widenings were found to increase the in‐stream habitat heterogeneity and enhanced the establishment of pioneer habitats and riparian plants. Analyses of species pools based on a hierarchic list of indicator species and correspondence analysis showed that the ability of river widenings to host typical riparian species and to increase local plant diversity strongly depends on the distance to near‐natural stretches. Species dispersal and establishment might be hampered by decisions taken outside the scope of the restoration project. Therefore we conclude that action on the catchment scale is needed to maximize the benefits of local management. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Effects of stream enhancement on habitat conditions in five spring‐fed urban streams in Christchurch, New Zealand, were investigated. Stream enhancement consisted of riparian planting at three sites, and riparian planting and channel modifications at two sites, where a concrete dish channel and a timber‐lined channel were removed, and natural banks reinstated. Sites were surveyed prior to enhancement activities and 5 years after, and changes in riparian conditions (composition, horizontal and vertical cover), instream conditions (bank modifications, inorganic and organic material on the streambed), and hydraulic conditions (wetted perimeter, cross‐sectional area, depths and velocities) quantified. Enhanced sites generally had higher marginal vegetation cover, as well as increased overhanging riparian vegetation, reflecting planting of Carex sedges close to the water. Bed sediments changed at some sites, with the greatest change being replacement of a concrete channel with gravel and cobble substrate. Bryophyte cover declined at this site, reflecting loss of stable habitat where these plants grew. Bed sediments changed less at other sites, and cover of fine sediments increased in some enhanced sites, presumably from sediment runoff from nearby residential development. Filamentous algal cover decreased at one stream where shade increased, but increased in another stream where the removal of timber‐lined banks and creation of a large pond decreased shade. Stream enhancement increased variability in velocity at three of the five sites, but overall changes to stream hydraulics were small. Although enhancement activities altered the physical conditions of the streams, major changes occurred only to riparian vegetation and bank conditions. Lack of other major changes to instream physical conditions most likely reflected the limited range of channel morphology alterations undertaken. Moreover, the flat topography of Christchurch and naturally low stream discharge further constrained changes to instream physical conditions from enhancement activities. Sediment inputs from continuing urban development also negated the effects of adding coarse substrates. These over‐arching factors may constrain the success of future stream enhancement projects within Christchurch. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
To understand the influence of dams on connectivity of riparian plant communities along rivers, we examined plant dispersal by water (hydrochory) and riparian plant community attributes upstream and downstream from dams on two rivers in the southern Rocky Mountains, Colorado, USA. Drifting plant propagules were collected from the water column along reaches upstream and downstream from dams to examine the longitudinal and temporal variation in seed‐pool species composition and concentration of water‐transported seeds. Similarities between species composition of the hydrochoric seed pool and local standing riparian vegetation were used to evaluate the degree of longitudinal connectivity along river corridors and to isolate the relative contributions of local versus regional species pools to hydrochoric species composition. Furthermore, several synthetic attributes (longevity, origin, life‐form and dispersal mode) and species composition of riparian plant communities were examined to explore the effects of interrupted propagule dispersal on standing vegetation. We estimated that as many as 120 million seeds were transported via hydrochory along free‐flowing reaches of the Rocky Mountain streams in a single growing season. Seed concentration (seeds/m3) in the water column was reduced by 70–94% along reaches downstream from dams compared to free‐flowing reaches. The similarity in species composition of hydrochoric seeds and local standing vegetation was nearly two times greater downstream from reservoirs compared to upstream. This suggests that hydrochory complements local species pools by importing seeds from throughout the upstream catchment area along free‐flowing river reaches, but that hydrochoric seeds are derived primarily from local sources along regulated river reaches. Species richness recovers as a function of downstream distance from contributions of standing vegetation and seeds from tributary streams. Hydrochory may extend the period over which viable seeds of a parent population are dispersed. Even after dispersal of parent populations has terminated, seeds may continue to be available due to residence time in water transport. This extension of the ‘effective dispersal window’ of some species may exceed two weeks or more and may influence the likelihood of successful establishment. In this study, synthetic attributes of riparian vegetation did not differ significantly between free‐flowing and regulated reaches, whereas formal statistical comparisons of community composition upstream and downstream from reservoirs indicate that there are differences in community composition upstream and downstream from dams. These findings suggest that the consequences of 50 to 100 years of fragmentation result in community‐wide effects along Rocky Mountain streams and that these effects may be partially explained by dam‐caused disruption in connectivity of plant populations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Large wood (LW) has important physical and ecological functions in streams. Riparian vegetation is extensively removed during urban expansion, and urban streams may experience enhanced fluvial transport of LW due to flashy hydrology. In this study, LW loads were assessed for three reaches on North Buffalo Creek, an urban stream located in Greensboro, North Carolina, United States. These three reaches have similar hydrology but different riparian vegetation densities. We measured the frequencies and sizes of both in-channel LW and riparian vegetation across the three reaches. Our results showed that the recently reforested reach had greater LW volume (22.5 m3/km) compared to the unmanaged forested site (16 m3/km) and the site with low riparian vegetation density (4.78 m3/km). The difference in LW frequency among reaches was statistically significant ( p = .05 ). However, the difference in the volume of individual pieces was not significantly different across reaches ( p = .84 ) , indicating that a similar size of wood is recruited across the three sites. Our findings also showed that there is a positive relationship between riparian vegetation frequency and in-channel LW frequency, which are significantly related as a power function. Spatial lag models (integrating upstream riparian trees) did not show better results compared to a non-lagged model, suggesting that storage and recruitment were predominantly local and that the LW distribution at our reaches is limited by recruitment rather than dominated by fluvial transport. Our findings suggested that a fully forested watershed is not needed to provide some of the benefits of wood to urban streams.  相似文献   

11.
Riparian ecosystems in montane areas have been degraded by mining, streamflow alterations, and livestock grazing. Restoration of ecological and economic functions, especially in high-elevation watersheds that supply water to lower elevation urban and agriculture areas is of high priority. We investigated the response of riparian vegetation and bank stability following channel treatments and riparian habitat restoration along a segment of the upper Arkansas River south of Leadville, Colorado. The study area has been historically degraded by heavy-metal mining and is designated a U.S. Superfund site. Additionally, trans-basin water diversions and livestock grazing have contributed to channel widening and altered vegetation composition and cover. We used a before-after-control impact study design in four reaches with varied contamination and grazing history to assess restoration success. Before restoration, streambanks were dominated by graminoids and total vegetation cover varied among reaches with willow cover less than 16% in three reaches. Post-restoration, changes in total vegetation cover fell short of projected goals, but willow cover was greater than 20% in all study reaches. The increase in woody cover likely contributed to reduced erosion and vegetation encroachment post-restoration. Differences in functional group cover among reaches persisted post-restoration and may be attributed to soil contamination levels and low willow seed rain and dispersal. These results highlight the importance of setting realistic restoration goals based on elevation and past land use. We recommend further remediation of fluvial tailings with low vegetation cover and continued monitoring of willow height and cover to determine if further restoration activities are needed.  相似文献   

12.
Riparian vegetation is widely recognized as a critical component of functioning fluvial systems. Human pressures on woody vegetation including riparian areas have had lasting effects, especially at high latitude. In Iceland, prior to human settlement, native downy birch woodlands covered approximately 15%–40% of the land area compared to 1%–2% today. Afforestation efforts include planting seedlings, protecting native forest remnants, and acquiring land areas as national forests. The planted and protected nature of vegetation along rivers within forests provides a unique opportunity to evaluate the various taxa within riparian zones and the channel stabilizing characteristics of the vegetation used in afforestation. We investigated bank properties, sediment textures, and root characteristics within riparian zones along four rivers in forests in Iceland. Bank sediment textures are dominantly sandy loam overlying coarser textures. Undercut banks are common because of erosion of the less cohesive subsurface layer. Quantitative root data indicate that the woody taxa have greater root densities, rooting depths, and more complex root structures than forbs or graminoids. The native downy birch has the highest root densities, with <1 mm roots most abundant. Modeling of added bank cohesion indicates that willow provides up to six times and birch up to four times more added cohesion to the coarse sediment textures comprising stream banks compared to no vegetation. We conclude that planting and protecting the native birch and willow helps to reduce bank erosion, especially where long-term grazing exclusion can be maintained.  相似文献   

13.
The San Pedro River in the southwestern United States retains a natural flood regime and has several reaches with perennial stream flow and shallow ground water. However, much of the river flows intermittently. Urbanization‐linked declines in regional ground‐water levels have raised concerns over the future status of the riverine ecosystem in some parts of the river, while restoration‐linked decreases in agricultural ground‐water pumping are expected to increase stream flows in other parts. This study describes the response of the streamside herbaceous vegetation to changes in stream flow permanence. During the early summer dry season, streamside herbaceous cover and species richness declined continuously across spatial gradients of flow permanence, and composition shifted from hydric to mesic species at sites with more intermittent flow. Hydrologic threshold values were evident for one plant functional group: Schoenoplectus acutus, Juncus torreyi, and other hydric riparian plants declined sharply in cover with loss of perennial stream flow. In contrast, cover of mesic riparian perennials (including Cynodon dactylon, an introduced species) increased at sites with intermittent flow. Patterns of hydric and mesic riparian annuals varied by season: in the early summer dry season their cover declined continuously as flow became more intermittent, while in the late summer wet season their cover increased as the flow became more intermittent. Periodic drought at the intermittent sites may increase opportunities for establishment of these annuals during the monsoonal flood season. During the late summer flood season, stream flow was present at most sites, and fewer vegetation traits were correlated with flow permanence; cover and richness were correlated with other environmental factors including site elevation and substrate nitrate level and particle size. Although perennial‐flow and intermittent‐flow sites support different streamside plant communities, all of the plant functional groups are abundant at perennial‐flow sites when viewing the ecosystem at broader spatial and temporal scales: mesic riparian perennials are common in the floodplain zone adjacent to the river channel and late‐summer hydric and mesic annuals are periodically abundant after large floods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
It is widely accepted that riverine ecosystems are influenced by the landscape pattern changes of their corresponding watersheds, but few studies have identified the most sensitive and nonsensitive biotic indices, the most influential landscape metrics and the relationship between aquatic biota and landscape patterns. To address this problem, Taizi river basin of Northeast China is taken as a case study, in which GIS technology and landscape ecology method are adopted. The study is performed at both the basin scale (entire drainage area upstream from certain sample point) and the riparian scale (a certain width buffer on each side of sample point extending the length of drainage network) to direct future landscape pattern design at the corresponding scales. The results show that at the basin scale, the species richness of benthic macroinvertebrate (B‐S) and the fish index of biotic integrity (F‐IBI) are the most sensitive biotic indices to landscape metrics, whereas the species richness of phytoplankton (P‐S), the Shannon–Weaver diversity index of phytoplankton (P‐H), zooplankton (Z‐H), benthic macroinvertebrate (B‐H) and fish density (F‐D) are not sensitive to landscape pattern changes; at the riparian scale, F‐IBI, B‐S and zooplankton density (Z‐D) have significant correlations with 9 of 10 landscape metrics calculated in this study, whereas P‐S, P‐H, Z‐H, B‐H, F‐D and species richness of fish have very low correlations with riparian landscape pattern changes. At the basin scale, no landscape pattern metrics show obviously more influence on the riverine ecosystems than other metrics. At the riparian scale, Shannon's diversity index is a very influential factor. As to both of the two scales, B‐S and F‐IBI are correlated with most landscape metrics. The information derived above can help understand the impacts of landscape change on river ecosystems more clearly and provide useful scientific information on river ecosystem protection from the viewpoint of landscape. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Although soil seed banks are understood to be integral to the vegetation dynamics and restoration of many ecosystems, little is known of their role in riparian zones. In this study, we investigated soil seed banks of riparian zones of contrasting condition in an agricultural landscape and evaluated their potential to influence riparian restoration. We examined the composition and structure of germinable soil seed banks along lateral gradients from stream channels in both cleared and wooded riparian zones of three lowland creeks within the Goulburn Broken catchment in temperate southeastern Australia. Environmental correlates of soil seed bank characteristics and similarity to extant vegetation were also examined. We found an abundant and species‐rich soil seed bank mostly comprising propagules of perennial rushes and sedges and annual and perennial grasses with many species of annual forbs. While the majority of identifiable germinants and species were native, exotic species were common at all locations. Soil seed bank composition was relatively homogeneous among streams and along lateral gradients from the channel. Riparian condition (i.e. cleared or wooded), however, had a strong influence on soil seed bank composition and structure with cleared reaches containing more species, more germinable annual grasses and higher total numbers of germinable seeds. Soil seed bank composition was correlated with site openness suggesting that extant vegetation structure plays an important role in soil seed bank dynamics. Recruitment from the in situ soil seed bank will help restore only some components of the riparian plant community and may hinder restoration by introducing undesirable species. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The effects of habitat enhancement on the invertebrate communities in five urban streams in Christchurch, New Zealand, were investigated. All streams underwent riparian planting, while extensive channel modifications were made at two streams, where a concrete dish channel and a wooden timber‐lined stream were removed and natural banks reinstated. Benthic invertebrates were collected before enhancement and 5 years after from the same locations. Invertebrates were also collected from control sites in each stream in 2001. Desired goals of enhancement activities included increasing the densities of mayflies and caddisflies, and decreasing densities of oligochaetes, snails and midges. Enhancement activities changed riparian vegetation and bank conditions, as well as substrate composition, instream organic matter and variability of instream velocities. Invertebrate communities prior to enhancement were typical of those in urban environments, and dominated by snails (Potamopyrgus, Physa), the amphipod Paracalliope, the hydroptilid caddisfly Oxyethira, oligochaetes and chironomids. Stream enhancement caused only small changes to the invertebrate community, with subtle shifts in overall abundance, species evenness, diversity, and ordination scores. Lack of a consistent strong response by invertebrates to enhancement activities, and continued absence of caddisflies and mayflies from enhanced sites may reflect lack of sufficient change to instream conditions as a result of stream enhancement, colonization bottlenecks for aerial stages of these animals, and the inability of individuals outside the urban watershed to perceive these enhanced ‘islands’ of good habitat. Alternatively, contamination of streambed sediments, excess sedimentation and reduced base flows may be limiting factors precluding successful invertebrate colonization in enhanced sites. These results highlight the importance of setting clear goals and objectives necessary to meet these goals. Enhancement of riparian zones in urban streams may not be adequate to improve benthic invertebrate communities. Identifying over‐arching factors that potentially limit invertebrate communities will enable the enhancement potential of streams to be better assessed, and allow managers to identify sites where recovery of biological communities is possible, and where such recovery is not. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
This study quantified the unique variation in stream fish and habitat and a land use disturbance index (LDI) at a variety of spatial scales: catchment, eight riparian polygons that varied in width and length (e.g. 50 m to all upstream reaches), upstream polygons of 1.6 and 3.2 km and the residual upland area of each site watershed not accounted for by each polygon. The analyses confirmed a hockey stick‐shaped relationship between the fish community and the LDI, with sensitive species only present below an LDI of 11. The largest variation for most metrics was explained by the largest polygons, suggesting that local riparian conditions were not as important predictors of stream condition. LDI in upland areas, where zero‐order streams occur, was also an important predictor of fish biomass and taxa richness. Contrary to expected, additive models with both catchment and riparian corridors provided minimal increases in predictive power, and no improvement in model performance occurred when data sets were stratified into sites below the LDI threshold. Finally, there was considerable covariation in the template and stressor predictor variables that made it difficult to quantify the unique variation in biological and physical responses accounted for by land use. That the 1600‐m proximal polygon provided the best predictor of the fish community and temperature is supportive of there being some proximal effects of land use. Overall, our findings suggest that stream management must consider processes that occur in the entire upstream catchment and the entire riparian corridor, including the headwaters for success. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Geomorphology at the scale of stream valleys influences smaller scale processes that give rise to spatially distributed patches, including large wood jams (LWJ) in streams. Understanding the spatial distribution of LWJ along streams with reference to large‐scale geomorphology is valuable for understanding stream and riparian interactions, and may be critical for effective stream management and restoration. We surveyed the locations of LWJ along 18 stream segments within study areas defined by stream‐valley geomorphology. The objective of this study was to test the prediction that LWJ in this system will be aggregated in areas defined by stream‐valley geomorphology, but be randomly distributed at smaller scales. The spatial distribution of LWJ was analysed by a one‐dimensional K‐function analysis capable of detecting aggregated, random and segregated patterns at different scales. The prediction that LWJ aggregate in areas defined by stream‐valley geomorphology was supported: LWJ aggregated at scales up to several kilometres in three streams. LWJ also was segregated at smaller scales in two of these streams; this was detectable when several stream valley segments were considered together. The prediction that LWJ would be randomly distributed at smaller scales was supported at most smaller scales for most streams. In fact, 40% of individual stream valley segments contained LWJ that were randomly distributed at all scales. Twenty‐seven per cent of individual stream valley segments showed segregated LWJ distributions. Large‐scale aggregation of LWJ evidences the need to select reference reaches that encompass several geomorphic patches at the scale of the stream valley. Segregated patterns of LWJ distributions evidence opportunities to better understand the relationships between hydraulic systems, material transport dynamics and riparian forests. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Instream wood promotes habitat heterogeneity through its influence on flow hydraulics and channel geomorphology. Within the Columbia River Basin, USA, wood is vital for the creation and maintenance of habitat for threatened salmonids. However, our understanding of the relative roles of the climatic, geomorphic, and ecological processes that source wood to streams is limited, making it difficult to identify baseline predictions of instream wood and create targets for stream restoration. Here, we investigate how instream wood frequency and volume differ between seven sub‐basins of the interior Columbia River Basin and what processes shape these differences within these sub‐basins. We collected data on wood volume and frequency, discharge and stream power, and riparian and watershed forest structure for use in modelling wood volume and frequency. Using random forest models, we found that mean annual precipitation, riparian tree cover, and the individual watershed were the most important predictors of wood volume and frequency. Within sub‐basins, we used linear models, finding that some basins had unique predictors of wood. Discharge, watershed area, or precipitation often combined with forest cover, riparian conifer, and/or large tree cover in models of instream large wood volume and frequency. In many sub‐basins, models showed at least one hydrologic variable, indicative of transport competence and one ecological variable, indicative of the reach or upstream watershed's capability to grow measurable instream wood. We conclude that basin‐specific models yield important insights into the hydrologic and ecological processes that influence wood loads, creating tractable hypotheses for building predictive models of instream wood. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Little is known about changes in the composition of dead wood jams along rivers and the possible consequences of any such changes on the river ecosystem. Although tree zonation along the upstream‐to‐downstream continuum is weak and highly variable from a system to another, a clear transition appears in the piedmont zone, which is reflected by transitions in dead wood sources as well as for dead wood transport, storage and decomposition processes. In this paper, we focus on large lowland rivers of southwestern France, where riparian vegetation is increasingly fragmented, reduced in area and/or is entirely replaced by planted forests (poplar plantations). The amount and the potential role of dead wood is practically unknown in these rivers. One reason is that French legislation obliges landowners and public service managers to remove all material from the stream in order to maintain unobstructed river flows. The other reason is that unlike pristine streams in northern regions, these rivers have been regulated for several decades (Adour River) or even for several centuries (Garonne River). The vegetation component of the managed riparian landscape has changed in particular as a result of i) a decrease in stream dynamics, ii) the replacement of natural forests by planted ones, and iii) the invasion of natural communities by introduced woody species. The possible consequences of biological invasions on the role of dead wood jams are discussed in light of: i) a local study of wood jams along a moderately modified system; ii) changes observed in the composition of trees along the Adour River over the past 10 years; iii) a regional case study involving two chosen species. Whereas white willow populations are declining along streams in southwestern France, the box‐elder, introduced from the United States, has spread extensively in the last two decades. Statistical models would suggest that competitive pressures are limited between these two species, boxelder is expected to replace white willow in the near future as a consequence of an increase in river regulation and global warming. This can be expected to have important consequences on dead wood dynamics, and on the management of woody debris, especially since trends indicate a replacement of softwood species by hardwood species. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号