首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A good understanding of the natural flow regime plays an important role in many hydrological studies. Also important in such studies is the quantification of environmental flows. This study focuses on flow metrics that best describe the natural flow regime and the hydrological characteristics for rivers in New Brunswick (Canada) as well as quantifying environment flows for these rivers. New Brunswick rivers have a mean annual flow (MAF) of approximately 23 L s?1 km?2, which is also reflective of the water availability. The frequency analysis showed that low flows (T = 2–50 years, where T is the recurrence interval) were all below the 10% MAF. Environmental flow methods based on the MAF and flow duration analysis (median flow) showed good regional regression equations. However, flow duration methods showed high variability especially at flows between Q80 and Q100. Flow targets based on the 25% MAF, Q50 and 70% Q50 were used to estimate environmental flows, particularly during low‐flow periods (winter and summer). Results showed that the 70% Q50 method should be used with caution in summer as this method provided flows in the range of 15–16% of MAF. Other methods provided environmental flows higher than 15% MAF, thus, providing better flow protection for aquatic habitat. When comparing water availability for off‐stream use (river flow–environmental flow), different parts of New Brunswick were found to be deficient in flows (i.e., river flows less than environment flows—no extractable water) during the summer and winter low‐flow periods.  相似文献   

2.
Minimum flows in rivers and streams aim to provide a certain level of protection for the aquatic environment. The level of protection is described by a measure such as a prescribed proportion of historic flows, wetted perimeter or suitable habitat. Conflicting minimum flow assessments from different instream flow methods are arguably the result of different environmental goals and levels of protection. The goals, the way in which levels of protection are specified, and the relationship between levels of protection and the aquatic environment are examined for three major categories of flow assessment methods: historic flow, hydraulic geometry and habitat. Basic conceptual differences are identified. Flow assessments by historic flow and hydraulic methods are related to river size and tend to retain the ‘character’ of a river. Habitat-based methods make no a priori assumptions about the natural state of the river and flow assessments are based primarily on water depth and velocity requirements. Flow and hydraulic methods assume that lower than natural flows will degrade the stream ecosystem, whereas habitat methods accept the possibility that aspects of the natural ecosystem can be enhanced by other than naturally occurring flows. Application of hydraulic and habitat methods suggests that the environmental response to flow is not linear; the relative change in width and habitat with flow is greater for small rivers than for large. Small rivers are more ‘at risk’ than large rivers and require a higher proportion of the average flow to maintain similar levels of environmental protection. Habitat methods are focused on target species or specific instream uses, and are useful where there are clear management objectives and an understanding of ecosystem requirements. Flow and hydraulic methods are useful in cases where there is a poor understanding of the ecosystem or where a high level of protection for an existing ecosystem is required. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
Effective river regulation requires consideration for environmental and economic aspects and also for social aspects including recreation. Our study investigated relationships between river hydrology and recreational flows (RF) for canoes, kayaks, rafts and other non‐motorized boats, for 27 river reaches in the Red Deer and Bow river basins of southern Alberta, Canada. A subjective RF method involved regression analyses of data from River Trip Report Cards, volunteer postcard‐style surveys rating flow sufficiency. A total of 958 trip reports were submitted for the rivers between 1983 and 1997 and about 30 reports permitted confident regression analysis for a river reach. Values from these analyses were very consistent with values from the ‘depth discharge method’, a hydraulic modelling approach that used stage–discharge ratings to determine flows that would produce typical depths of 60 and 75 cm for minimal and preferred flows, respectively. Values were also consistent with expert opinions from river guidebooks and maps and aggregate values were calculated from the combined RF methods. These were very closely correlated with mean discharge (Qm) across the rivers (r2 = 0.94 for minimal and 0.96 for preferred flows). The relationship best fitted a power function (straight plot on log versus log scales) with a consistent slope but vertical offset for minimal versus preferred flows. Close relationships between guidebook estimates of RF and Qm were also observed for rivers in the American Rocky Mountain states of Idaho (r2 = 0.55 and 0.74), Montana (r2 = 0.34 and 0.80) and Colorado (r2 = 0.43 and 0.51), but the association was weaker for the Pacific Northwest state of Oregon (r2 = 0.35 and 0.26). These analyses indicate that RF can be confidently determined through a combination of subjective and hydraulic methods and reveal that RF values represent a systematic function of discharge for a broad range of alluvial and constrained river reaches. From these analyses we provide the ‘Alberta equation’: minimal recreational flow = 3 × Qm0.59 (Qm in m3/s), and preferred flows would typically be 1.5 times higher. For other river regions the exponent ‘0.59’ may be relatively constant but adjustments to the coefficient ‘3’ could be applicable. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Ecological processes in lowland rivers are mostly dominated by hydrology and its interactions with other environmental factors. Fish–habitat relationships in rivers are also influenced by human impacts. In this study, we describe patterns of abundance and distribution of fish species in a group of natural lowland river lakes along spatial anthropogenic and abiotic gradients when four hydrologically different summers are compared. We also describe the proportion of the total variances in fish species abundances that can be accounted for by selected abiotic (water conductivity), hydrological (water residence time) and human activity‐derived (total phosphorus (TP) concentration and NO3:NH4) variables. Consequently, our main purpose is to explore how abiotic and anthropogenic factors interact to affect fish abundance and distribution together with consistent results across different hydrological conditions. We conclude with a briefly discussion of some management implications. The anthropogenic impacts on water quality, the extreme hydrological variability and the fluctuating abiotic environment affected fish abundance and distribution. Pampa inland silverside Odontesthes bonariensis was benefited from a less human disturbed environment with higher water residence time and total salinity, whereas species as Cyphocharax voga, Parapimelodus valenciennis and Cyprinus carpio found these conditions largely disadvantageous. On the other hand, while most species showed stronger—either negative or positive—response to anthropogenic, hydrological or abiotic factors Oligosarcus jenynsii was only slightly affected. This paper identified the ecological function of a lowland river under its natural flow regime. There are not many opportunities to study unmodified rivers worldwide. Therefore, our findings may help in assessment programmes of fish communities in flow altered and human disturbed aquatic ecosystems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Minimum environmental flows in rivers provide a certain level of protection for the aquatic environment. The relationship between wetted perimeter and discharge can be used to define the minimum environmental flows by the slope method (SM), or curvature method (CM), especially for cases with poor understanding of the aquatic ecosystem. SM and CM derived inconsistent values of minimum environmental flows. It was not clear which method better defined minimum environmental flow. Moreover, the computation and optimization procedures are both time consuming and error‐prone, especially for complicated wetted perimeter–discharge relationships. In this study, flow regulation for rivers was regarded as a multiple criteria decision‐making problem, with the objectives of minimum river discharge and maximum wetted perimeter. Ideal point methods (IPMs) with the scaling coefficient r = 1 (IPM1) and r = 2 (IPM2) were used to solve this model to determine optimal environmental flows. IPM was simple in computation, especially when the wetted perimeter–discharge relationship was given as scattered data pairs. Meanwhile, it was applicable to a wider range of wetted perimeter–discharge relationship than SM and CM. Environmental flows estimated by IMP1 are the same as that by SM. The analytical results for environmental flows using SM, CM, IPM1 and IPM2 were compared for wetted perimeter–discharge relationship expressed as power or logarithmic function. It showed that CM is not a good method to define environmental flows. SM with unity slope and IMP1 were recommended. CM, SM and IPM were examined for the determination of environmental flows in a river in North Xinjiang, China. Environmental flows for different transects of the studying river reach were estimated to be 21% of the mean annual flow by SM or IPM1, which provided the satisfactory wetted perimeter, water depth and average velocity for aquatic organisms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The migratory response and behaviour of catadromous Australian bass with regard to hourly mean river flows and water temperatures was assessed over 15 months. Fish movement was assessed using a 75‐km passive acoustic telemetry array in the regulated Shoalhaven River below Tallowa Dam, NSW, Australia. The majority (62%) of downstream pre‐spawning migrations from freshwater to estuarine habitats were stimulated by a series of flow pulses from April to September, but a proportion of fish (38%) commenced downstream migrations under regulated baseflow conditions after a sustained decrease in water temperature to below 15°C in late autumn. Equal numbers of fish undertook post‐spawning upstream return migrations during flow pulses and during regulated baseflow conditions, with regulated baseflow migrants exhibiting a preference for dusk–dawn passage through freshwater pool–riffle sequences. The median magnitude of flow pulses at the time of commencement of downstream and upstream freshwater migrations by Australian bass was not large, equivalent to natural (in the absence of river regulation) flows equalled or exceeded for 56% and 48% of time, respectively. There was no evidence for increased numbers of migrants with increasing flow pulse magnitude, with individual fish ignoring some flow pulses but responding to subsequent events. In regulated rivers, the release of more frequent flow pulses with peak magnitudes approximating the natural 50th flow duration percentile may be more effective in stimulating greater numbers of Australian bass to undertake pre‐spawning and post‐spawning migrations between freshwater and estuarine habitats than the release of a single, larger event. The propensity of Australian bass to also undertake spawning migrations under regulated baseflow conditions emphasizes the need for provision of baseflow regimes in regulated rivers that can facilitate migrations by large bodied fishes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
An intensified hydrologic cycle and a large amount of monitoring flow data in the latter half of the 20th century attracted a lot of research on the continental U.S. hydrologic change. However, most previous studies are based on HCDN (Hydro-Climate Data Network) dataset with a period of ~1950s ?1988. This study analyzed hydrologic change in continental U.S. based on MOPEX (international Model Parameter Estimation Experiment) hydrology dataset with a period of ~1950s ?2000 for 302 watersheds (gages) across diverse climate, vegetation and soil conditions. This dataset is more representative of the latter half of the 20th century than HCDN. In contrast with previous studies, this study shows that only 20–30 % of watersheds present increasing trends in flow (streamflow, Q; baseflow, Qbf; baseflow index, BFI), and most (> 65 %) watersheds presents non-significant trends. Similar to previous studies, the watersheds with increasing trends in Q and Qbf are concentrated in Midwest and high plain (North-Central area) of USA. Climate contributes more to Q change (61?±?25 % vs. 39?±?25 %) but slightly less to Qbf change than human activity (49?±?26 % vs. 51?±?26 %) and much less to BFI change than human activity (?5?±?61 % vs. 105?±?61 %). A step change at ~1971 in Q and Qbf was found for 35–45 % but not for a large proportion of watersheds (50 % or more was reported by previous studies). This study provides new insights on the latter half of the 20th century’s hydrologic cycle for the continental U.S. with a more representative dataset of this period.  相似文献   

8.
河道中存在水生植物会改变水流阻力,在大多数情况下会导致水位抬高,降低河道的泄洪能力。然而,水生植物的存在对河道治理、边滩保护、水质净化等起积极作用。为了探索河道中水生植物对水流阻力的影响,在实验室水槽中进行了不同密度的流淹没刚性植物水流试验,观测了沿程的水位变化,计算了水面坡降,基于试验资料分析了雷诺数、植物密度对糙率系数的影响,并建立拖曳力同植物水流特征粗糙度对数关系表达式,丰富了植物条件下明渠流动的试验观测资料数据库。  相似文献   

9.
Quantitative studies of the relationships between river water quality and environmental variables are needed to improve understanding of the impacts of natural and human factors on aquatic environments. However, multicollinearity between environmental variables can hinder the identification of key factors when water quality–environment relationship is studied using traditional regression methods. This study utilized two alternative statistical methods, variation and hierarchical partitioning, to address these difficulties in studies of river water quality. Using these methods, we explored the effects of catchment physiography, climate and land use variables on total phosphorus and nitrogen, pH, water colour and dissolved oxygen during the years 1995–2005 in 32 boreal rivers in Finland. Catchment physiography and land use explained most of the variation in water quality, especially in phosphorus, nitrogen and water colour data. The strong correlations (rs > 0.8) between agricultural land use and phosphorus and nitrogen concentrations indicate that water quality is highly affected by agriculture in boreal regions. By determining the environmental drivers of different water quality variables, we can estimate the water quality of different catchments in response to environmental changes and identify areas that are sensitive to global changes. Our study shows that novel statistical methods integrated with geographic information system data and techniques provide deeper insights into water quality–environment relationships than traditional regression, and these should be considered when developing, for example, conservation planning for rivers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Philosophically, the natural flow regime concept is tremendously appealing; however, its application can be challenging for many biologists without the expertise or resources to handle such approaches on their own. This is particularly true on hydropeaking rivers, where incorporating natural flow is sometimes challenging. Additional challenges include our limited understanding of how individual flow components relate to geomorphic and ecological processes. Supplementary to environmental flow approaches is understanding that many hydropeaking rivers are ecologically two different rivers in one: the low flow and high peaking flow. Taxa that require a narrow range of water velocities or cannot withstand rapid changes in discharge would likely be eliminated or competitively disadvantaged under such harsh environmental conditions. As the low and peak flows diverge, the two rivers become increasingly different ecologically, and there will likely be fewer taxa that can withstand such abiotic variability. Deviations from a natural flow regime may result in new constraints on certain fishes and invertebrates, but this does not necessarily mean a loss of productive fish habitat. Viewing hydropeaking rivers as two rivers in one and the risks associated with high to low flow ratios may serve as a more practical and useful perspective towards maintaining altered yet productive rivers while representing a step towards improving the management river ecosystems. © Her Majesty the Queen in Right of Canada 2013.  相似文献   

11.
Abstract

This paper presents a first attempt to estimate the volume of water required for the maintenance of freshwater-dependent ecosystems at the global scale. This total environmental water requirement consists of ecologically relevant low-flow and high-flow components and depends upon the objective of environmental water management. Both components are related to river flow variability and estimated by conceptual rules from discharge time series simulated by the global hydrology model. A water stress indicator is further defined, which shows what proportion of the utilizable water in world river basins is currently withdrawn for direct human use and where this use is in conflict with environmental water requirements. The paper presents an estimate of environmental water requirements for 128 major river basins and drainage regions of the world. It is shown that approximately 20 to 50 percent of the mean annual river flow in different basins needs to be allocated to freshwater-dependent ecosystems to maintain them in fair conditions. This is unlikely to be possible in many developing countries in Asia and North Africa, in parts of Australia, North America, and Europe, where current total direct water withdrawals (primarily for irrigation) already tap into the estimated environmental water requirements. Over 1.4 billion people currently live in river basins with high environmental water stress. This number will increase as water withdrawals grow and if environmental water allocations remain beyond the common practice in river basin management. This paper suggests that estimates of environmental water requirements should be the integral part of global water assessments and projections of global food production.  相似文献   

12.
中国主要河湖水生态综合评价   总被引:9,自引:1,他引:8  
张萍  高丽娜  孙翀  孙政 《水利学报》2016,47(1):94-100
河湖水生态综合评价是水资源保护规划工作的重要内容之一。本文从水文水资源、水环境、河湖生境形态、生物及栖息地状况等方面,构建了包含生态基流满足程度、水功能区水质达标率、湖库富营养化指数、纵向连通性、重要湿地保留率及鱼类生境等6个指标构成的河湖水生态综合评价体系。在此基础上,对全国673条河流、97座水库和100个湖泊湿地共计1006个规划河段和湖库的水生态状况进行了评价和分类,分析了我国各大流域河湖面临的水生态问题。研究成果对我国主要河湖水生态保护和修复工作的实践具有重要的指导意义。  相似文献   

13.
大中型综合利用水库调度运行将使下游河道水文情势发生较大改变,为避免河流水生态系统功能遭受无法恢复的破坏,需要合理确定工程下游河段的生态基流。在综合分析某水库坝下河段的生态保护需求和服务功能的基础上,通过对常用的生态基流计算方法进行整理与比选,采用Tennant法、湿周法、R2-Cross法、7Q10法和90%保证率最枯月平均流量法等计算了水库下游河段的生态基流。在此基础上,综合考虑下游湿地的生态需水要求、水厂取水、工农业用水等因素,确定了工程下游河段的生态基流量。研究结果可为工程规划设计提供技术支持。   相似文献   

14.
水生态红线是水生态环境保护的重要途径,将从管理机制上为水生态安全提供更可实施的保障。本文通过对水生态系统表象特征和水生态系统演化过程的关联分析,提出了水生态保护的红线框架体系:水量红线、空间红线和水质红线,阐释了三条红线间的相互关系及其内涵。综合生态需水、淹没面积、生态健康评价方法,嵌入我国生态环境保护相关规范,提出了兼顾自然和社会属性的水生态红线分级方法,建立了水生态红线指标体系。以淮河水系淮滨、王家坝和蚌埠断面为例,进行了水生态红线划定的示例应用。本文提出的三位一体的水生态红线框架体系和红线划定方法,弥补了水生态保护红线机制研究的空缺,为水生态保护研究与实践提供了新的思路和方法。  相似文献   

15.
Groundwater is a critically important source of water for river, wetland, lake, and terrestrial ecosystems, yet most frameworks for assessing environmental flows have ignored or not explicitly included the potential impacts of groundwater pumping on environmental flows. After assessing the processes and existing policies for protecting streamflow depletion from groundwater pumping, we argue that a new groundwater presumptive standard is critical as a placeholder to protect environmental flows in rivers lacking detailed assessments. We thus extend the previous presumptive standard to groundwater pumping, a different and important driver of changes to streamflow. We suggest that “high levels of ecological protection will be provided if groundwater pumping decreases monthly natural baseflow by less than 10% through time.” The presumptive standard is intended to be a critical placeholder only where detailed scientific assessments of environmental flow needs cannot be undertaken in the near term. We also suggest a new metric, the environmental flow response time, that allows water managers to quantify the timescales of the impacts of groundwater pumping on the loss or gain of environmental flows.  相似文献   

16.
Fish have evolved traits and life history characteristics that enable them to survive, exploit and depend on the flow regime of rivers, particularly the timing and predictability of flows for spawning and rearing their young. It is unclear to what degree pulsed flows from hydropower facilities and other environmental variables influence migratory behaviours. We used Dual Frequency Identification Sonar in the Michipicoten River, Canada, to address the relationship between fish migration and environmental factors with a focus on flow magnitude and fluctuation. In both 2007 and 2009, the peak of the Chinook (Oncorhynchus tshawytscha) and pink salmon (Oncorhynchus gorbuscha) migration occurred on 8 September. Mean water temperature on this date was 18 °C and precipitously dropped afterwards. The photoperiod was roughly 12‐h long with sunrise at 700 h and sunset at 2000 h. Most fishes moved upstream during the hours of darkness between 2000 and 600 h. The lowest counts of fish occurred from noon to just before sunset, whereas highest counts commonly occurred from 1 to 2 h after sunset. Fish moved upstream during all magnitudes of flow; however, there was a slight preference for larger flows in 2007 but not in 2009. Changes in flow magnitude occurred both during the day and night, with flows typically increasing during the day to meet electrical demand and decreasing at night. Most fishes moved upstream during periods of little to no change in flow. High flows and changing flows may deter salmon from moving up the Michipicoten River but not likely in a significant manner to cause energetic stress or harm. Other adverse effects of pulsed flows, however, must still be considered for spawning, hatching and rearing success. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Four methods were compared for determining recreational instream flow needs (R‐IFN) for paddling canoes, kayaks and rafts on ten river reaches in the Oldman River Basin of southern Alberta. Two flow criteria were evaluated: ‘minimal flow’—the low flow that still provides a reasonable quality river trip; and ‘sufficient flow’—the lower end of the favoured flow range. A voluntary, mail‐in user survey from 1983 to 1997 produced 394 responses (4251 paddler days) relative to flow suitability. An expert judgment approach considered flow recommendations from three regional paddling guides that were considered comprehensive and credible. A flow comparison involved about 20 paddle trips per reach by the authors with differing groups, boats and flows. These subjective approaches produced quite consistent results (r2 = 0.63) and these were compared to results from an objective, hydraulic modelling method, the ‘depth, discharge method’ (DDM), that applied stage–discharge functions to determine flows that would satisfy depth criteria of 60 and 75 cm. The DDM minimal flows were closely correlated with the means of the subjective methods (r2 = 0.73). Thus, all four approaches produced generally consistent results, indicating that all methods were valid. Typical minimal and sufficient flows were about 15 and 30 m3 s?1, respectively, for the medium‐sized river reaches that had average annual discharges (mean Q) of about 20 m3 s?1. A close correlation (r2 = 0.90) between the minimal flow and mean Q suggests that mean Q can provide an initial estimate for R‐IFN for rivers of this type and size. We recommend that R‐IFN studies commence with the DDM since it is quick, inexpensive and objectively defensible. This would provide guidelines for subsequent subjective assessments that should involve more than one approach to increase the breadth of subjective consideration. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The influence of rigid unsubmerged vegetation on flow structure and turbulent kinetic energy of gradually varied flow are experimentally investigated in this research. Natural reed stems of different densities are employed to examine the effects of the rigid unsubmerged vegetation on the flow in rivers. The results reveal that the vegetation existence significantly changes the gradually varied flow state from type M1 to type M2 in the vegetation section. The traditional power law describing the vertical flow velocity profile is evidently invalid when the vegetation density becomes high. With the irregularity index proposed in the research, the irregularity of vertical flow velocity profile in vegetated reach can be exponentially described in relation to the vegetation density. Furthermore, the turbulent kinetic energy is found to increase and reach a maximum value near the end of the vegetation section that is a potential localized erosion area. The results of the research have significances in river ecological restoration applications utilizing aquatic vegetation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The downstream hydraulic geometry relationships, i.e., the downstream variation of the water surface width W, the hydraulic depth H, and the mean velocity V at a constant flow frequency, represent the adaptation of channel geometry and flow dynamics to a given hydrological regime. It has been reported that W, H, and V all tend to increase in the downstream direction for most natural rivers but their increasing rates show relative differences. It is widely known that most natural rivers exhibit W increasing at a greater rate compared to H, indicating the formation of wide and shallow rivers. Nevertheless, rivers showing the opposite to this trend, i.e., H increases at a rate greater than that of W, have also been observed. We investigated four rivers in this study where two of them (the Kansas River and the Tennessee River) show greater increasing rate of W than that of H and the other two (the Mississippi River and the Nakdong River) show the opposite. We found that the two types of rivers show different spatial patterns in their relationships between suspended sediment concentration (C) and flow discharge (Q). Essentially, rivers with a greater increasing rate of W (i.e., the Kansas and the Tennessee) show C-Q relationships lagged in the downstream direction. On the other hand, rivers with a smaller increasing rate of W (i.e., the Mississippi and the Nakdong) show C-Q relationships that are aligned along the downstream direction. Considering that the flow discharge increases downstream in general, the rivers showing the aligned C-Q relationships are exposed to greater imbalance of spatial distribution of sediment fluxes, and hence supposed to be less stable compared to the other type of rivers.  相似文献   

20.
We evaluated the response of benthic macroinvertebrates in a Michigan trout stream to flow reduction by diverting water from a 602 m reach of Hunt Creek from June through August of 1994, 1997 and 1998. We also assessed the utility of the Physical Habitat Simulation system (PHABSIM) in predicting the response of benthic insects to water withdrawals by testing the assumption of a positive linear relationship between modelled habitat (weighted usable area, WUA) and the density of 13 benthic insect families. Our findings showed that the density of filter feeding and grazing insect taxa, as well as insects classified as obligate erosional zone taxa, declined significantly in the dewatered (treatment) zone (TZ) when 90% of flow was diverted. Density of Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa in the TZ was significantly lower when 90% of water was diverted as compared to density at baseflow or when flow was reduced by 50%. The density of all insects in an upstream reference zone riffle (RZ), where flow was not altered, did not change among experimental periods. Although overall reductions in the density of benthic insects at 90% flow reduction coincided with lower PHABSIM predictions of WUA, we found poor linear correlation between WUA at different flows and the density of the 13 benthic insect families for which WUA was modelled. The low proportion of variation explained by WUA for all families modelled suggests that WUA alone is not an accurate predictor of benthic insect density. Resource managers should consider the potential consequences of water withdrawals to all components of stream communities, including benthic macroinvertebrates. However, caution should be applied when using the PHABSIM technique in groundwater‐fed streams such as Hunt Creek, because most relationships between WUA and benthic insect density were insignificant. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号