首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
通过对高钛渣化学成分及物相的分析,选择强化焙烧-浸出工艺制备人造金红石,为氯化法生产钛白粉提供优质原料.试验研究得出最佳工艺条件为:焙烧温度900℃,洗涤剂浓度50g/L,洗涤液固比3∶1,洗涤温度为60℃,洗涤时间为0.5 h.制备出的人造金红石Ti02品位高达94%以上,满足《中华人民共和国有色行业标准》YS/T299-2010规定的人造金红石TiO2-1产品的要求.  相似文献   

2.
通过对高钛渣化学成分及物相的分析,选择强化焙烧—浸出工艺制备人造金红石,为氯化法生产钛白粉提供优质原材料。试验研究得出最佳工艺条件为焙烧温度为900 ℃、洗涤剂浓度为50 g/L,洗涤液固比为3∶1,洗涤温度为60 ℃,洗涤时间为0.5 h。制备出的人造金红石TiO2品位高达94%以上,满足《中华人民共和国有色行业标准》YS/T299-2010规定的人造金红石TiO2-1号产品的要求。  相似文献   

3.
以云南某地两种不同性状电炉冶炼钛渣为原料, 对氧化还原-流态化酸浸和活化焙烧-洗硅-流态化酸浸两种高钛渣制备人造金红石的工艺路线进行了试验研究, 并通过XRD、SEM分析等手段探讨了氧化还原和活化焙烧对高钛渣改性的机理。试验结果表明, 低硅含量的电炉钛渣采用氧化还原-流态化酸浸工艺可获得符合沸腾氯化钛白原料要求的人造金红石;采用活化焙烧-洗硅-酸浸工艺可得到TiO2品位97%的细粒级人造金红石。  相似文献   

4.
高碳镍钼矿的浸出试验研究   总被引:6,自引:2,他引:4  
采用焙烧原矿-碳酸钠浸出焙砂-硝酸浸出碱浸渣工艺对某高碳镍钼矿进行了钼、镍浸出研究, 并确定了各阶段的主要工艺参数, 原矿在550 ℃下焙烧4 h后, 进行碱浸出, 碱性浸出剂Na2CO3用量为8%、液固比为3∶1、40 ℃下浸出2 h后, 再对碱浸渣进行酸浸, 酸性浸出剂HNO3浓度为35%, 液固比为3∶1, 70 ℃下浸出2 h, Mo的总浸出率达到92.72%, Ni的浸出率达到97.18%。  相似文献   

5.
通过对高钛渣化学成分及物相的分析,选择强化焙烧—浸出工艺制备人造金红石,为氯化法生产钛白粉提供优质原料。试验研究得出最佳工艺条件为:焙烧温度900℃,洗涤剂浓度50 g/L,洗涤液固比3:1,洗涤温度为60℃,洗涤时间为0.5 h。制备出的人造金红石TiO2品位高达94%以上,满足《中华人民共和国有色行业标准》YS/T299-2010规定的人造金红石TiO2-1产品的要求。  相似文献   

6.
为了提高硫酸化焙砂中金和铜的浸出率,降低尾渣金品位,减少铜对氰化浸出过程的影响,考察了焙砂粒度、硫酸浓度、温度对硫酸脱铜率和脱铜渣氰化浸金率的影响。结果表明,焙砂(矿粉粒度-0.045 mm粒级占90.16%)在酸度25 g/L、液固比1.5∶1、80 ℃下浸出2 h,硫酸脱铜率达93.62%。脱铜渣在NH4HCO3用量10 kg/t、液固比1.5∶1、NaCN浓度0.10%条件下浸出60 h,金浸出率高达98.04%。根据研究结果,通过提高硫酸脱铜温度、硫酸浓度和氰化浸出过程增加旋流器和浸出槽数,采用两段浸出-两段洗涤措施,对现有生产流程进行了优化,铜和金回收率得到了明显提高,获得较好的经济效益。  相似文献   

7.
盐酸常压直接浸出攀西地区钛铁矿制备人造金红石   总被引:4,自引:0,他引:4  
以攀西地区钛铁矿为原料,采用.盐酸常压直接浸出法制备高品位人造金红石。结果表明,原矿粒度及盐酸浓度对人造金红石品位影响最大。采用液固比4:1、盐酸浓度30%、温度95℃的条件,对于球磨4h钛精矿浸出4h可得到TiO2含量94.39%的人造金红石产品,对于未磨原矿浸出10h可得TiO2含量91.78%的人造金红石产品。  相似文献   

8.
某铜金精矿焙烧-酸浸-氰化综合回收金铜工艺研究   总被引:4,自引:2,他引:2  
谭希发 《矿冶工程》2011,31(1):47-50
对吉林某浮选铜金精矿进行了焙烧-酸浸-氰化浸出综合回收金、铜的试验研究。焙烧的最佳焙烧条件为:焙烧温度550 ℃, 焙烧时间1.5 h。焙砂硫酸浸出的最佳条件为:酸浸温度75 ℃, 酸浸时间4 h, 初酸浓度40 g/L, 液固比4。氰化浸金的最优条件为:氰化钠初始浓度3‰, 氰化时间24 h, 液固比2。试验结果表明, 该工艺技术指标较好, 金、铜浸出率分别为99.06%和97.63%。  相似文献   

9.
硫化钼镍矿中镍的强化浸出工艺研究   总被引:1,自引:1,他引:0  
刘美 《矿冶》2011,20(3):72-75
通过焙烧—水浸实现原生硫化镍钼矿中镍和钼的分离,并对得到的氧化镍渣进行强化浸出工艺研究,考察酸的种类、配比、浸出温度、液固比、浓度、超声波以及添加剂等工艺因素对镍浸出率的影响。得到的较优工艺条件为:原矿和无水碳酸钠质量比1∶0.9,560℃焙烧6 h,650℃焙烧1.5 h,焙砂中镍品位为2.67%、回收率为96.70%,钼品位为3.50%、回收率为99.85%;在液固比4∶1,温度95℃的条件下,水浸焙烧渣2 h,99.70%的镍留在滤渣中,95.43%的钼进入滤液,有效地实现了钼和镍的分离;在液固比为6∶1、浸出温度95℃、超声波振荡、浸出时间为6 h、硫酸浓度为15%和加入0.5 g添加剂条件下,镍渣中镍的浸出率为79.80%。  相似文献   

10.
针对某含铜金精矿,研究了焙烧—酸浸—萃取回收铜工艺。结果表明,在焙烧温度650℃,焙砂在初酸浓度为35 g/L、液固比1.5∶1,浸出温度90℃,浸出时间1.5 h的条件下,铜浸出率高达96.30%,酸浸渣铜品位可降至0.2%以下;萃取剂浓度为20%,相比O/A=2∶1,混合时间为4 min,pH值1.5,铜萃取率可达96%以上,实现了铜的高效回收。  相似文献   

11.
铁酸锌还原焙烧试验研究   总被引:3,自引:1,他引:2  
解立群  施哲  胡汉 《矿冶》2011,20(3):76-78
对锌焙砂进行还原焙烧,再对还原焙砂进行浸出。浸出温度70~80℃;pH值2~3;液固比6∶1;浸出时间2 h。对比试验得到最佳还原焙烧的温度900℃、焙烧时间60 min、粉煤配比1∶10。这时锌的浸出率达到90%左右,铁浸出率15%左右。再对浸出渣磁选,得到了铁精矿。  相似文献   

12.
采用硫酸化焙烧-浸出法,对从镍红土矿中提取镍、钴进行了实验研究.主要考察了酸料比、含水率、焙烧温度、焙烧时间及活化剂加入量等因素,对红土矿中镍、钴、铁浸出率的影响.结果表明,在酸料比为0.4、含水率为40%及活化剂Na2SO4加入量为2~3 g的条件下,采用在400℃下预焙烧20 min,再在700℃下焙烧90 min,在80℃下搅拌水浸1 h,镍的浸出率为85%,钴的浸出率为95%,铁的浸出率在5%以下  相似文献   

13.
焙烧歧化-铁屑还原浸出低品位锰矿工艺研究   总被引:1,自引:1,他引:0  
舒琳  刘海燕  邹琴 《矿冶工程》2016,36(4):72-75
采用焙烧歧化-铁屑还原法对低品位锰矿进行还原浸出, 探究了一种焙烧过程不添加还原剂、反应全过程无有害气体产生的高效浸出锰的方法, 考察了焙烧温度、酸矿比、铁矿比、液固比、反应温度、反应时间对锰浸出率的影响。结果表明, 在焙烧温度700 ℃、酸矿比1.05∶1、铁矿比0.14∶1、液固比6∶1、浸出温度50 ℃下浸出2 h, 锰浸出率达到92.63%。  相似文献   

14.
采用钠盐焙烧-酸浸工艺处理以部分铁氧化物呈浸染状分布在粘土矿物中的某高铝硅极难选褐铁矿。通过单因素试验分别考察了焙烧工艺中焙烧温度、焙烧时间、钠盐用量、磨矿粒度等对焙烧的影响, 酸浸工艺中考察了硫酸浓度、液固比、酸浸温度和时间等因素对浸出指标的影响。试验结果表明, 在磨矿粒度为-0.074 mm粒级占90.36%, 碳酸钠用量为15%, 焙烧温度为950 ℃, 焙烧时间为30 min, 硫酸浓度为7%, 液固比为15∶1, 酸浸温度为60 ℃, 酸浸时间15 min条件下, 可获得TFe品位为60.21%, 回收率为93.49%, SiO2和Al2O3含量分别为3.28%和6.81%的铁精矿。  相似文献   

15.
针对高硅锌精矿焙烧过程中焙砂可溶硅高、沸腾炉易结块、浸出固液分离困难等问题,论文以现场生产焙烧工艺参数为基础,研究了低温和高温焙烧对焙砂中可溶硅含量的影响,并基于MatCal软件对沸腾炉焙烧工艺进行热平衡计算。结果表明:在焙烧条件基本相同的情况下,随着硫化锌精矿焙烧温度的增加,焙砂中的可溶硅也增加。当焙砂中可溶硅高于3.18%会出现浓密机上清液跑混、低浸浓密底流矿浆过滤困难、净液中除杂钴偏高等问题。经MatCal模拟计算后,理论消耗空气50361.328Nm3/h,低温焙烧的平均风量47102.8m3/h,高温焙烧平均风量48005.7m3/h,实际的焙烧中平均风量偏低,需要增加沸腾炉的风料比。  相似文献   

16.
为了最大程度地回收铜渣中的铁资源、得到高品质的珠铁产品, 在实验室条件下模拟转底炉, 使用高温炉焙烧还原由铜渣、还原煤、石灰石制备的含碳球团, 直接还原生成珠铁和渣, 再通过人工挑选的方式实现渣铁分离。研究了焙烧温度、焙烧时间、还原煤用量、石灰石用量等因素对焙烧效果、珠铁全铁品位、铁回收率的影响, 确定较佳的球团配料比为铜渣∶还原煤∶石灰石=100∶20∶10, 较佳的焙烧条件为焙烧温度1 400 ℃、焙烧时间40 min, 最终可获得铁回收率91.04%、全铁品位94.72%、C含量1.23%的高品质珠铁。  相似文献   

17.
为实现某低品位钒矿中钒的有效提取,采用低温硫酸化焙烧预处理技术,强化含钒矿物伊利石在焙烧过程中晶体结构破坏和物相转变,为焙砂水浸提取钒创造有利条件。重点考察了焙烧温度、焙烧时间、原矿粒度、硫酸用量等因素对钒浸出率的影响及焙烧过程中的物相演变规律。结果表明:在焙烧温度为250℃、焙烧时间为2 h,原矿粒度为-0.096 mm、硫酸用量为40%的最佳焙烧条件下,钒浸出率可达83.64%。原矿、焙砂及浸出渣的XRD分析结果表明:在硫酸和升温的协同作用下,原矿中铝硅酸盐矿物晶格被有效破坏,伊利石与硫酸反应生成了重钾矾和易于浸出的水钒钠矿,脉石矿物方解石则反应生成石膏,为水浸提取钒创造了有利条件。焙烧过程的热力学计算进一步验证了低温硫酸化焙烧—水浸提钒工艺的可行性。  相似文献   

18.
采用兰炭作还原剂,对高炉粉尘进行还原焙烧,再对焙砂进行磁选,然后浸出磁选尾矿中的锌,实现锌、铁分离。在热力学计算的基础上,研究了焙烧条件对锌、铁浸出率的影响,结果表明:加碳焙烧可使高炉粉尘中的铁酸锌选择性还原为磁性氧化铁和氧化锌,较优的焙烧工艺参数为:焙烧温度800 ℃,焙烧时间2 h,配炭量50%。磁选可分离出焙砂中的磁性氧化铁。采用1 mol/L的硫酸在室温下浸出磁选尾矿1 h,锌、铁浸出率分别为75.39%和27.46%。  相似文献   

19.
以湖北大冶含铜钴硫精矿为原料,分别研究了硫精矿、硫精矿氧化焙烧渣和硫精矿氧化-还原焙烧渣中铜、钴的同步浸出行为,考察了浸出温度、浸出时间、固液比等工艺参数对铜、钴浸出的影响。结果表明,硫精矿氧化-还原焙烧渣中的铜、钴最易被浸出,浸出条件为:浸出温度70 ℃、浸出时间4 h、固液比1∶5,此时铜和钴浸出率分别为91.46%和65.84%; 采用氧化-还原焙烧-浸出-磁选联合流程处理硫精矿时,可获得铁品位62.31%、回收率68.26%的铁精矿,该工艺实现了硫精矿及焙烧渣中铜、钴、铁资源的综合回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号