首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Increased milking frequency (IMF) at the beginning of lactation has been shown to increase milk yield not only during IMF but also after its cessation. The objectives of this experiment evaluated the effects of increased milking frequency initiated during early lactation on mammary growth and effects on milk yield (MY). Thirty-one cows were divided into treatment groups: 1) 2X: cows milked twice daily (2X) beginning at parturition (d 1), 2) IMF1: cows milked four times daily (4X) from d 1 to 21 postpartum (PP) and 3) IMF4: cows milked 2X d 1 to 3 and 4X d 4 to 21 PP. The 4X cows were milked immediately before 2X cows and again approximately 3 h later, at the end of the normal milking routine. All cows were milked 2X from d 21 to 305 postpartum. Milk yields were 34.5, 37.8 and 37.6 kg/d during wk 1 to 44 for 2X, IMF1 and IMF4, respectively. Mammary biopsies from four cows per treatment were obtained on d 7 and 14 PP to evaluate mammary cell proliferation. Tritiated-thymidine incorporation tended to increase on d 7 in IMF1 cows, and arithmetic means of the percentage of cells expressing Ki-67 proliferation antigen were consistent with a proliferative response to IMF though not significant. Blood was sampled three times per wk during the first 2 wk and then once per wk during wk 3, 4, 5, 6, 8, and 10. Plasma insulin-like growth factor-1 (IGF-1) averaged 20.1 ng/ml in IMF cows vs. 24.2 in 2X but was not accompanied by a change in bST. Prolactin was also not affected by treatment. Neither milk yield nor potential effects on mammary cell proliferation were correlated with systemic IGF-1. Implementing an IMF routine increases MY during treatment and elicits a carryover effect on the remainder of lactation. Milk yield responses after an IMF routine may be the result of increased mammary cell proliferation.  相似文献   

2.
A mathematical model of biological mechanisms regulating lactation is constructed. In particular, the model allows prediction of the effect of milking frequency on milk yield and mammary regression, and the interaction of nutrition and milking frequency in determining yield. Possible interactions of nutrition with milking frequency on alveolar dynamics are highlighted. The model is based upon the association of prolonged engorgement (as a consequence of milk accumulation) of active secretory alveoli with changes in gene expression that result in impairment and, ultimately, cessation of milk secretion. The emptying of alveoli at milking, following alveolar contraction induced by oxytocin, prevents this process and also allows quiescent alveoli to reactivate. Prolonged engorgement results in apoptosis of the secretory cells and, hence, regression of the mammary gland. Milk yield is linked to alveolar populations, with secretion rates being modulated by nutrition and udder fill effects. The model was used to investigate different management scenarios, and is in agreement with experimental results. The model shows that while milking frequency drives alveolar population, and therefore potential milk production, actual production varies considerably with nutrition. A significant portion of the loss associated with once-daily milking was due to udder fill rather than loss of secretory tissue. The model showed qualitative agreement with experimental data, on the acute and chronic effects of temporary once-daily milking.  相似文献   

3.
《Journal of dairy science》2019,102(7):6595-6602
Milking cows once daily is a management tool that has been implemented to improve physical and financial results of seasonal pasture-based dairy farms. The Molly cow model integrates physiology and metabolism of dairy cattle; however, milk production during short-term changes in milking frequency (e.g., 1× milking) is not well represented. The model includes a representation of variable rates of cell quiescence and death. However, the rate constants governing cell death and the return of quiescent to active cells are not affected by milking frequency. An empirical assessment of the problem was conducted, and it was hypothesized that changing the current representation of the rate of cell death in response to short-term 1× milking would more accurately represent active and quiescent cells and improve predictions of milk production. An extra senescent cell flux was added to account for cell loss during periods of 1× milking. Additional changes included a gradual decline in the rate of 1× stimulated senescence during 1× milking, and a structural change in cell cycling between active and quiescent cells during and after short-term 1× milking. Data used for parameter estimation were obtained from 5 studies where 1× milking or different feeding strategies were tested. Parameter estimates of cell loss indicated that 1× milking would affect a small proportion of quiescent cells to cause extra cell death. This added cell senescence was influenced by the length of 1× milking such that cell senescence peaked on d 1 of 1× milking and decayed from that point. The new structure in the model includes a variable rate of cell death in response to 1× milking and a gradual rate of return of quiescent cells back to the active pool in response to switching to 2× milking after short-term 1× milking. Root mean square errors, mean bias, and slope bias declined by at least 50% for predictions of energy-corrected milk yield and fat percent. The model showed quantitative agreement with production data from short-term 1× milking. The accuracy of predictions was improved and the error was reduced by implementing modifications in the model in response to changes in milking frequency.  相似文献   

4.
《Journal of dairy science》2023,106(1):294-301
This study documents the effect of mechanical prestimulation on the milking duration of pasture-based cows in late lactation to better harness increased capacity of automation in the milk harvesting process. Premilking stimulation, provided via manual or mechanical means, has been shown to promote the milk letdown reflex and assist in achieving quick, comfortable, and complete milk removal from the udder. The literature is lacking knowledge on the effect of mechanical premilking stimulation on milking duration, especially in late lactation and in pasture-based systems, and many pasture-based farms do not practice a full premilking routine because of a lack of labor availability. The current study addresses this gap in knowledge. In this study, we tested 2 treatments: (1) the No Stim treatment used normal farm milking settings with no premilking preparation and (2) the Stim treatment used 60 s of mechanical premilking stimulation, with a rate of 120 cycles per minute and a pulsator ratio of 30:70 on cluster attachment. Once the 60 s of stimulation had elapsed, normal milking settings resumed for the remainder of the milking. Sixty cows were enrolled in the study, which ran for 20 d. The effect of treatment on a.m. milking duration was significant, a.m. milking duration for Stim was 12 s shorter than that of No Stim. The effect of treatment on p.m. milk duration was not significant. Treatment had no effect on a.m./p.m. milk yields, average milk flowrates or peak milk flowrates. Significant differences emerged between treatments on a.m. and p.m. dead time (time from cluster attachment to reach a milk flowrate of 0.2 kg/min). The a.m. and p.m. dead times were 6 s shorter for Stim compared with No Stim. The time taken to achieve peak milk flowrate (time to peak) at morning milking was 7 s shorter for Stim compared with No Stim, and treatment yielded no significant effects on time to peak at p.m. milkings. Treatment also had no significant effect on log10 somatic cell count. Although the percentage of congested teat-ends and teat-barrels was numerically lower for Stim versus No Stim, no statistical differences were detected across these measures. Based on the results of the study, we found merit in applying 60 s of mechanical pre-stimulation at a.m. milking from a milking duration perspective. However, the strategy was not as successful for the p.m. milking. Analysis of the milk flowrate profiles recorded during the study suggest potential utility in employing different machine settings for various milkings based on anticipated yield and level of udder fill.  相似文献   

5.
The objective of this study was to evaluate the effect of milking frequency on milk production and composition, mammary cell proliferation, apoptosis, and gene expression. For this investigation, 10 Holstein cows that were being milked twice a day in mid lactation were selected. To study the effect of differential milking, 2 quarters were milked once daily and the other 2 were milked thrice daily for 8 wk. After that period, twice-daily milking was resumed for all quarters, and data were collected for an additional 6 wk. Mammary gland biopsies were taken 1 wk before differential milking (wk −1) and after 4 and 8 wk of differential milking. Milk samples were collected weekly throughout the experiment. Once-daily milking resulted in an immediate reduction in milk yield, whereas thrice-daily milking resulted in an increase in milk yield. During differential milking, the daily milk yield of the quarters milked once daily declined by 0.54 kg/wk, on average, but remained constant in the quarters milked thrice daily. Part of the difference in milk yield between the glands pairs persisted after twice-daily milking was reinitiated. In the quarters milked once daily, milk BSA concentration increased, indicating an increase in tight junction leakiness, and zymographic analysis of milk enzymes showed increased activity of several proteases. Reducing the milking frequency also increased mammary cell apoptosis and, surprisingly, mammary cell proliferation. Interestingly, milk concentrations of stanniocalcin-1 and insulin-like growth factor-I and mammary gland expression of several genes were also modulated by milking frequency. For example, expression of insulin-like growth factor I receptor was downregulated during once-daily milking. Last, expression of the short and long isoforms of the prolactin receptor and of CSN2 (β-casein) were upregulated during thrice-daily milking. Taken together, these data suggest that milking frequency not only affects mammary gland remodeling and the expression of paracrine factors but also modulates hormone sensitivity.  相似文献   

6.
探讨奶山羊乳腺发育过程中泌乳激素(E2,P和PRL)及其受体(ERα,PR和PRLR)的变化规律及作用.分别在关中奶山羊乳腺发育的青春期、妊娠期、泌乳期及退化期,采集血清并用放射性免疫学方法测定各激素浓度,采集乳腺组织并用免疫荧光和real-time PCR检测各激素受体表达量.青春期和妊娠早期E2,P和PRL缓慢上升,妊娠晚期E2和P达峰值,泌乳启动PRL高峰,泌乳高峰过后各激素均回复正常水平.ERα和PRLR青春期开始缓慢上升,泌乳启动后ERα达到高峰,而泌乳期PRLR维持在高水平,并在退化期达到表达高峰.青春期PR较妊娠期高,妊娠后期又开始升高,退化期下降.E2与ERα,E2与P及与ERα之间正相关,其余的激素和受体之间相关性不显著.  相似文献   

7.
Results of previous studies have shown that increased milking frequency (IMF) during early lactation results in increased milk yield not only during the period of IMF but also after cows have returned to a decreased milking frequency. The cellular mechanisms underpinning this increased milk yield and the overall effects of IMF on metabolism have not been well characterized. The objective of this study was to determine the effects of IMF on metabolism and mammary epithelial cell proliferation in dairy cows. Thirty primiparous and 30 multiparous Holstein cows were assigned randomly at calving to 1 of 2 treatments. The control group was milked twice daily (2×) for 119 d, whereas the IMF group was milked 4 times daily (4×) from d 2 postcalving until d 21 and then 2× from d 22 until d 119. Overall milk yield did not differ between treatments throughout the 119 d monitored; however, the interaction of treatment by week was significant in that IMF cows yielded 4.8 kg/d more milk than control cows during wk 2 and 3 and had similar levels of milk yield during the remainder of the study period. Reanalysis of data excluding data from cows subjected to mammary biopsy suggested that the mammary biopsy procedure contributed to the lack of overall responses of milk yield, but that responses overall to IMF were greater in primiparous cows compared with multiparous cows. Plasma nonesterified fatty acid concentrations were elevated in multiparous cows subjected to IMF during the period of IMF, but were not influenced by treatment in primiparous cows. Plasma β-hydroxybutyrate concentrations were not affected by treatment. Mammary tissue was collected by biopsy in a subset of cows (n = 8 cows per parity and treatment) at calving and at d 21 and 75 postpartum and used for immunohistochemical localization of the cell proliferation antigen, Ki67. Effects of treatment on mammary epithelial cell proliferation were not significant, suggesting that other mechanisms must be responsible for carryover effects of IMF on lactational performance.  相似文献   

8.
The impact of nutrition on lactation can be separated into acute effects, affecting day-to-day yield, and chronic effects, which govern the persistency of lactation and rate of decline of the lactation curve. A mathematical model of the mammary gland was constructed to investigate both acute and chronic effects. Mammary growth is expressed in terms of the dynamics of populations of active (secreting) and quiescent (engorged) alveoli. The secretion rate of active alveoli is expressed in terms of the energy status of the dam. The model was fitted to data from a 2 x 2 factorial trial in which lactation curves were measured for heifers of two different genotypes (North American and New Zealand Holstein-Friesians) fed two different diets [grass and total mixed rations (TMR)]. Total formation of alveoli during pregnancy and lactation was statistically the same across all groups despite differences between diets, in the rate of formation of alveoli at parturition. The senescence rate of alveoli was significantly higher for heifers fed grass compared with heifers fed TMR, which corresponds to better persistency for heifers fed TMR. Heifers fed TMR had a higher rate of reactivation of quiescent alveoli than heifers fed grass, which also contributes to increased persistence for heifers fed TMR. There was a genotype x diet interaction in the rate of quiescence of active alveoli: the North American-Grass group had a higher rate of quiescence than the other three groups, perhaps reflecting differences in selection pressures between the New Zealand and North American genotypes.  相似文献   

9.
We hypothesized that early-lactation increased milking frequency, in combination with bovine somatotropin (bST), would improve milk yield in continuously milked (CM) primiparous glands through greater mammary epithelial cell (MEC) function, proliferation, and reduced apoptosis (cell turnover). Primiparous cows were randomly assigned to a 2 × 2 × 2 factorial with a split-plot design to either a continuous bST (+bST, n = 4) or no bST (−bST, n = 4) treatment throughout the study. Within each animal, udder halves were randomly assigned to either a CM or a 60-d dry period (control). During late gestation, CM glands were milked twice daily until calving or until spontaneous dry-off. At calving, cows were milked either twice or 4 times daily and udder-half milk yield was recorded until 30 d postpartum. Mammary biopsies were conducted on −19 ± 13, −8 ± 6, +2, +7, and +20 d relative to calving. Postpartum milk yield was reduced in CM udder halves. Reduced milk yield in CM half udders from cows administered bST and milked 4 times daily was 35% compared with 65% in CM half udders in cows not provided bST and milked twice daily. Proliferation of MEC tended to be greater in control vs. CM tissue at 8 ± 6 d prepartum. Mammary epithelial cell proliferation was greater during the prepartum period (d −19, −8) compared with postpartum time points (d 2, 7, 20). Apoptosis of MEC was not affected by dry period length, but was elevated during the first 7 d postpartum compared with levels measured at −19, −8, and 20 d. Bovine somatotropin did not alter MEC turnover in primiparous CM or control glands. The use of increased milking frequency and bST alleviated, but did not prevent, reductions in milk yield of CM primiparous cows.  相似文献   

10.
Increasing milking frequency (MF) increases milk yield (MY) and farm profit, and optimal milking intervals (MI) prevent milk production decline. The objective of this experiment was to compare the MY effect of even and uneven 4 times daily (4×) MI in early lactation under increased MF. Fourteen multiparous and 6 primiparous cows were milked using unilateral frequent milking, with right udder halves milked 4× and left udder halves milked 2 times daily (2×) for 20 d in early lactation starting on d 5 postpartum. Ten (7 multiparous and 3 primiparous) cows were allocated evenly based on parity and assigned to either the even or the uneven MI groups distinguished by intervals of 9:3:9:3 h or 6:6:6:6 h. The left and right udder halves were milked at 0100 and 1300 h. The right udder glands were additionally milked at 0400 and 1600 h for the uneven MI group and at 0700 and 1900 h for the even MI group. Milk from each udder half was weighed and sampled for components on the final day of treatment and at 60, 120, 180, 240, and 300 d in milk. The overall effect of 4× milking on the right udder halves was a 5.96 ± 0.70 kg/d increase in MY on d 21 of unilateral frequent milking compared with the 2× udder halves. This elevated MY continued through 300 d in milk and averaged 1.56 ± 0.70 kg/d. Increased MF in early lactation increased the udder half difference in total yield throughout a 300-d lactation by 508 kg for milk, 25 kg for milk fat, and 15 kg for milk protein. Increased MF in early lactation increased milk component yields, but there were no differences between MI groups. The lack of treatment difference may be beneficial to farmers. The ability to achieve the same increased MY effect with uneven MI may optimize labor efficiency because early-lactation cows could be milked at the beginning and end of milking sessions. Farmers would not have to add additional milking sessions to achieve the enhanced MY response regardless of normal milking session length.  相似文献   

11.
Increased milking frequency during early lactation can elicit immediate and persistent increases in milk yield; however, the timing and duration of frequent milking have not been optimized. Our objective was to use a half-udder model to determine the milk yield response to 2 wk of frequent milking imposed at 2 different times in early lactation. Multiparous Holstein cows were assigned at parturition to unilateral frequent milking [UFM; twice-daily milking (2×) of the left udder half and 4-times-daily milking (4×) of the right udder half] on d 1 to 14 (UFM-1-14) or 7 to 21 (UFM-7-21) of lactation (n = 10 cows per treatment). Cows were milked 2× before and after UFM. Half-udder milk weights were measured at 1, 3, 7, 14, 21, 28, and 35 d in milk, and then once every 3 mo for the remainder of lactation. For both treatments, the 4× udder halves produced more milk than the 2× udder halves during UFM, resulting in an average difference of 3.7 ± 0.7 kg/d in UFM-1-14 cows and 2.9 ± 0.9 kg/d in UFM-7-21 cows. After cessation of UFM, milk production of the 4× udder halves decreased in both treatments, but UFM-7-21 cows produced 1.5 ± 0.6 kg/d more milk from the 4× side than the 2× side for the remainder of the lactation. In UFM-1-14 cows, the difference was 1.2 ± 0.7 kg/d, which was significant overall, but not at 270 d in milk. In both treatments, the full-lactation yield of the 4× udder half was greater than the 2× half. Moreover, the total milk yield response to UFM observed in the current study did not differ from that observed in a previous study in which cows were assigned to UFM from d 1 to 21 of lactation. We conclude that UFM for a 2-wk interval during early lactation elicited a persistent increase in milk production of the frequently milked udder half. In addition, the overall milk yield responses observed for UFM-1-14 or UFM-7-21 were not significantly different than that previously observed for UFM on d 1 to 21 of lactation.  相似文献   

12.
The objective of this study was to investigate milk yield and frequency of visits to the milking station of primiparous versus multiparous cows at different stages of lactation on farms with automatic milking systems (AMS) in the Upper Midwest United States. Forty farms were included in the study, and daily AMS software data were collected for 18 mo. For the investigation of milk yield and milking visits, stage of lactation was categorized into 14 periods, 7 d in length for the first 28 d in milk (DIM) and 30 d in length thereafter until 328 DIM. Cow traffic flow to the AMS (free or guided) was included in the model. For the evaluation of failures and refusals, stage of lactation was categorized into 6 periods, 7 d in length each for the first 28 DIM, and 2 periods of 150 d in length each thereafter until 328 DIM. Failures are milking station visits where a cow fails to be milked due to lack of machine attachment although it is time for the cow to be milked. Refusals are milking station visits before adequate time has passed since previous milking, thus the cow leaves the milking station without being milked. Data from lactation days beyond 328 DIM were excluded from the study. Primiparous cows in free-flow systems produced less milk than multiparous cows until the 11th stage of lactation and produced more milk from the 12th stage until the end of the study period. Primiparous cows in guided-flow systems produced less milk than multiparous cows all 14 stages of lactation, but were approaching the milk yield of multiparous cows at the end of the study period. This was a biologically normal lactation curve for primiparous cows. However, estimated peak ratio (primiparous vs. multiparous cows' peak milk yield) was lower than industry standards. Both traffic flow systems had fewer milking visits for primiparous cows compared with multiparous cows in early lactation. This lower milking frequency persisted until the 11th stage of lactation in free-flow systems. In guided-flow systems, primiparous cows were milked less frequently until the 5th stage of lactation, had similar milking frequency in the 6th stage of lactation, and were milked more frequently thereafter. Failures were greater for primiparous cows during all stages of lactation. However, the greatest differences were detected in the early stages of lactation. Primiparous cows had 0.067 more failures/cow per day on average than multiparous cows during wk 1 of lactation. For the remaining lactation stages, differences in failures ranged from 0.003 to 0.039. Refusals were less frequent (0.4 to 0.6/d) for primiparous cows during the first 2 wk of lactation, similar for wk 3 of lactation, and more frequent for the remaining lactation stages (0.10 to 0.14/d). Failures and refusals were only evaluated in free-flow systems. These findings appear to indicate a potential lagging performance for primiparous cows in early lactation as compared with multiparous cows. Additional investigation into improving the adaptation of primiparous cows to AMS in early lactation may be warranted.  相似文献   

13.
Frequent milking during early lactation of dairy cows increases milk production throughout lactation; however, whether this response is regulated systemically via lactogenic hormones, locally in the mammary gland, or both is unknown. We hypothesized that the effects of frequent milking on milk production during early lactation are regulated via local mechanisms. Ten multiparous cows were assigned at parturition to unilateral frequent milking [UFM; twice daily milking of the left udder half (2×), or 4 times daily milking of the right udder half (4×)] for d 1 to 21 of lactation. After treatment, cows were milked twice daily for the remainder of lactation. At the first milking after calving, milk yield from individual quarters was measured to verify that udder halves produced equal amounts of milk prior to treatment. Thereafter, individual quarters were milked on d 3 and 7, weekly for the first 5 wk of lactation, and once every 3 mo for the remainder of lactation. During UFM, cows produced 3.9 ± 0.7 kg/d more from the side milked 4× than the side milked 2×. Upon cessation of treatment, milk production from the side milked 4× decreased, but remained at 1.8 ± 0.5 kg/d more than the side milked 2× for the remainder of lactation. After milk yield was corrected to the equivalent of a whole-udder basis, acute milk yield responses to frequent milking were found to be consistent with previous reports. Moreover, we observed greater persistency in the milk yield response, which lasted throughout lactation. We conclude that both immediate and persistent effects on milk production of frequent milking during early lactation are regulated at the level of the mammary gland. Our results demonstrate that UFM is a valid and efficient model for investigating the effects of frequent milking during early lactation in dairy cows.  相似文献   

14.
Increasing the milking intervals reduces milk yield. The aims of this study were to determine whether the reduction in milk yield could be explained by a decrease in mammary uptake of the nutrients or a decrease in the efficiency of the mammary gland in using the milk precursors to synthesize milk components, or both. In a Latin square design with 5 periods, 4 multiparous lactating dairy cows in midlactation were milked at 8-, 12-, 16-, or 24-h intervals over a period of 7 d. The cows were surgically prepared to estimate the net mammary balance of nutrient precursors of milk components (glucose, α-amino nitrogen, acetate, β-hydroxybutyrate, and total glycerol). The efficiency of the mammary gland in synthesizing milk components was estimated by the mammary uptake:milk output ratio. After 7 d of treatment, the decrease in milk yield of 6.1 kg/d between 8- and 24-h milking intervals was associated with a reduction in the uptake of nutrients by the mammary gland, whereas the efficiency of the mammary gland in synthesizing milk components remained relatively unchanged. The mammary uptake decreased by 26% for glucose, 32% for α-amino nitrogen, 18% for acetate, 24% for total glycerol, and 24% for β-hydroxybutyrate, respectively. These reductions in nutrient uptake were due to a decrease in the mammary blood flow (1.23 ± 0.24 L/min). For milk fat precursors (acetate, β-hydroxybutyrate, and total glycerol), the decrease in mammary blood flow explained the entire reduction in the mammary uptake. For glucose and the milk protein precursors, the reduction in the mammary blood flow explained 60% of the decrease in the mammary uptake, with the other 40% being accounted for by a reduction in the mammary extraction of nutrients. The nutrient uptake was altered as milk yield decreased. These decreases began with the 16-h milking interval and were higher at the 24-h milking interval.  相似文献   

15.
Frequent milking of dairy cows during early lactation elicits both an immediate increase in milk yield and a partial carryover effect that persists to the end of lactation. We hypothesized that the immediate response would be associated with a local increase in insulin-like growth factor (IGF)-I signaling and a consequent increase in mammary growth. Four multiparous cows were assigned at parturition to unilateral frequent milking [UFM; milking of the left udder half twice daily (2×; 0230 and 1430 h); milking of the right udder half 4 times daily (4×; 0230, 0530, 1430, and 1730 h)]. Mammary biopsies were obtained from both udder halves at 5 d in milk at 0530 h (immediately after 4× glands were milked). Incorporation of [3H]-thymidine into DNA and mammary cell apoptosis were not affected by UFM. Because biopsies were obtained when udder halves were at different postmilking intervals, our results reflected both the acute, transient mammary response to milking and the sustained mammary response to frequent milking treatment. We further hypothesized that the acute, transient response involves mechanisms distinct from those regulating the sustained response to frequent milking. To test that hypothesis, mammary biopsies were obtained from UFM cows (n = 5) at 0500 h, when time postmilking was the same for both udder halves. Mammary cell apoptosis was not affected by UFM. Expression of genes involved in the IGF-I axis was analyzed to identify acute responses associated with milking, per se, versus sustained responses to frequent milking treatment. Removal of milk from 4× glands was associated with an acute increase in expression of IGF binding protein-1, -3, and -4 mRNA in 2× glands, whereas IGF-I expression was increased by frequent milking treatment. These effects, however, were significant only for expression of IGF binding protein-3. Expression of IGF-I receptor did not differ because of milking frequency but was higher in both udder halves immediately postmilking, indicating a systemic effect. We conclude that several genes of the IGF-I axis respond to milking, per se, or frequent milking treatment, via at least 3 distinct patterns. Increased milking frequency does not alter mammary cell proliferation or apoptosis at 5 d in milk; however, it may increase the bioavailability of IGF-I in the mammary gland. Moreover, the increase in local expression of IGF-I in 4× udder halves indicates a role for this gene in the immediate milk yield response to frequent milking during early lactation.  相似文献   

16.
Cortisol is essential to milk synthesis; however, different acute stressors and the exogenous administration of adrenocorticotropic hormone (ACTH) decrease milk yield. Therefore, the effect of cortisol on milk yield and its influence on the survival of mammary epithelial cells have not been fully elucidated. In this context, the objective of this study was to evaluate the effect of cortisol on the expression of growth hormone receptor (GHR), insulin-like growth factor type 1 (IGF1), insulin-like growth factor type 1 receptor (IGF1R), insulin-like growth factor-binding protein 3 and 5 (IGFBP3 and IGFBP5), BAX, and BCL2 genes on the proliferation and apoptotic rates of mammary epithelial cells, and on milk yield in Saanen goats. In the present study, 3 experiments were conducted: (1) comparing the in vivo effects of first milking, vaccination, vermifugation, preventive hoof trimming, and the administration of ACTH or a placebo on cortisol release in dairy goats; (2) studying the in vivo effects of immediate increases in cortisol on the mammary gland of lactating goats; and (3) studying the in vitro effects of a prolonged increase in cortisol on mammary epithelial cells obtained from lactating goats. Cortisol release by goats increased significantly after ACTH administration compared with that observed after a placebo, and the cortisol profiles after first milking, vaccination, vermifugation, hoof trimming, and ACTH administration were similar. However, there was no effect of the immediate increase in cortisol in vivo on IGF-1 release, milk yield, milk quality, or the apoptosis and proliferation rates, nor was there any effect on the expression of the target genes. Furthermore, no interaction was observed between IGF-1 and cortisol in either the in vivo or in vitro experiments. However, the addition of cortisol in vitro significantly increased the expression of the GHR and IGF1R genes, which stimulate cell proliferation, and the BAX gene, which causes apoptosis. These contrasting results can explain why cortisol did not change the rates of proliferation or apoptosis in epithelial cells. Indeed, cortisol supplementation in vitro did not change the number or apoptotic rate of epithelial cells over the course of 5 d. Finally, further studies must be performed to understand the effect of cortisol on the expression of the GHR, IGF1R, and BAX genes by epithelial cells and the roles of these genes in milk synthesis during early lactation.  相似文献   

17.
A comparative study was performed to evaluate differences in milk yield between an automatic milking system (AMS) and a conventional herringbone milking parlor system. Two herds of Italian-Friesian cows were reared in the same barn, located in the Po Valley in northern Italy. Twenty-five primiparous cows and 10 multiparous cows were milked with an AMS, while at the same time 29 primiparous and 9 multiparous were milked twice daily in a milking parlor on the other side of the barn. A selection gate allowed cows to access the AMS only if the interval from last milking was >5 h. Multiparous cows in the AMS yielded more milk than multiparous cows in the milking parlor (34.2 ± 0.7 vs. 29.4 ± 0.6 kg/d). There was no difference in milk yield between primiparous cows in the AMS and in the milking parlor (28.9 ± 0.4 vs. 28.8 ± 0.3 kg/d). Milking frequency in the AMS was significantly higher in primiparous (2.8 ± 0.03) than in multiparous cows (2.5 ± 0.04). The hot season negatively affected milk yield; the milk yield reduction was higher for cows milked with the AMS (−4.5 ± 0.6 kg/d) than in the milking parlor (−3.0 ± 0.8 kg/d). In the AMS, milking frequency decreased during the hot season in primiparous cows (−0.3 ± 0.1). We concluded that a positive AMS effect on milk yield is possible, but that steps must be taken to alleviate the discomfort involved with attracting cows to the AMS.  相似文献   

18.
《食品工业科技》2013,(03):136-139
对奶山羊挤奶过程中不同挤奶阶段的乳样中微生物变化规律进行了研究。结果表明,不同挤奶阶段乳中微生物数量有明显变化,挤出的前期乳样中微生物数量最高,中期乳样次之,末期乳样最低。前期乳样的菌落总数、大肠菌群、嗜冷菌、嗜热菌、蛋白分解菌和脂肪分解菌的数量分别高达3×106、1.4×104、3.3×104、1.3×103、1.5×105和1.3×105cfu/mL,明显高于中期乳样和末期乳样(p<0.05),尤其是前期乳样中的菌落总数已高出GB19301-2010中收购生鲜乳的微生物指标(2×106cfu/mL)。因此在挤奶过程中,应尽可能的弃去前期乳样,以提高原料羊乳的卫生质量。   相似文献   

19.
20.
We investigated the effects of bovine somatotropin (bST) on mammary gland function and composition in the declining phase of lactation in goats. Sixteen Saanen goats, 180 +/- 11 days in milk (DIM), were divided equally into control and treated groups. The treated group received 120 mg/2 wk of slow-release bST for three cycles. Milk yield, milk composition, milk clotting measures, and plasmin-plasminogen activator activities were recorded weekly. Milk Na and K were determined in individual milk samples collected weekly during the third cycle. Blood samples were collected weekly during the second cycle and the plasma analyzed for nonesterified fatty acids (NEFA), glucose, and urea. At the end of the 6 wk, three goats from each group were slaughtered, and the udders were removed. Mammary gland weight, composition, and total DNA content were determined. The histological effects of bST on mammary tissue were investigated. The analyzed parameters included numbers of alveoli, corpora amylacea, apoptotic cells, and laminin fibronectin distribution and localization. An extensive morphological analysis on the epithelial and stromal components was performed. Milk yield was significantly higher in the treated group, fat content was not affected, but protein and nonprotein nitrogen were lower in treated goats milk. Treatment with bST did not influence milk pH but reduced coagulation time. Plasmin and plasminogen activator activities were not affected. Milk K levels were higher and the Na/K ratio was lower in treated animals. Plasma glucose, NEFA, and urea were unaffected. Mammary gland weight and total DNA were higher in treated than control animals, suggesting that with advancing lactation bST treatment maintains cells. Fat, protein, and collagen content of the mammary tissue did not differ between the groups. Treatment with bST significantly increased the number of lactating alveoli (LA) and significantly reduced the number of regressing alveoli (RA) and corpora amylacea, both within and outside the alveolar lumen. Laminin and fibronectin localization were not affected, and very few apoptotic cells were found in both treated and control samples. Our findings suggest that bST administration to dairy goats in late lactation can modulate mammary gland activity and improve lactation persistency; this is associated with maintained total mammary parenchyma weight and lactating alveoli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号