首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
采用Fenton试剂氧化处理含邻氯苯胺的生产废水,研究了H2O2,Fe2+投加量以及反应体系pH值对废水COD去除率的影响。通过实验,确定了Fenton试剂处理该废水的最佳操作条件:在pH值为3,FeSO4.7H2O的投加量为Fe2+在废水中的质量浓度达到0.56 g/L,每升废水中H2O2(质量分数30%)投加量18 mL时,废水的COD去除率达到72.9%。  相似文献   

2.
Fenton试剂-MBR工艺处理环氧增塑剂化工废水的研究   总被引:2,自引:0,他引:2  
针对含有H2O2的环氧增塑剂化工废水,采用Fenton-膜生物反应器(MBR)工艺进行处理。研究了不同的Fe2+的投加量和反应时间对Fenton试剂处理废水的影响,讨论了不同水力停留时间(HRT)和进水COD浓度对MBR处理废水效率的影响。由结果可得,当Fenton试剂中Fe2+投加量1.1 g/L、反应时间3 h、MBR的HRT 30 h和MLSS 7000~8000 mg/L时为最佳操作条件。处理出水CODCr为150~250 mg/L,总COD去除率为94%。  相似文献   

3.
利用Fenton+MnO_2+A/O组合工艺处理过氧化甲乙酮生产废水。在Fenton+MnO_2预处理阶段对影响废水COD去除率的主要因素进行了考察,得到反应的最佳条件:p H=2.7,30%H_2O_2投加量为0.1 L/L,FeSO_4·7H_2O投加量为5 g/L,MnO_2投加量为8 g/L,MnO_2氧化反应时间为45 min。废水经Fenton+MnO_2氧化预处理后可生化性由0.14提高到了0.25左右。废水经Fenton+MnO_2+A/O组合工艺处理后,出水COD稳定低于500 mg/L。  相似文献   

4.
为了深度处理草甘膦含磷废水使其达到排放标准,采用了固定化微生物厌氧和好氧生物处理以及聚合氯化铝铁(PAFC)絮凝物化处理相结合的方法,对化学氧化再用循环活性污泥法(CASS)处理后的草甘膦含磷废水进行了一系列的实验研究。考察了组合工艺各个阶段的停留时间、投加量、反应温度等复合工艺运行参数对结果的影响,优化确定了厌氧-好氧结合的生物法最佳操作参数和物化法的最佳投加量。结果表明,在厌氧停留时间为2h,好氧停留时间为6 h,PAFC投加量为20 mg/L的条件下,经过30 d的连续运行实验,新工艺对废水中化学需氧量(COD)的去除率达到95%,总磷去除率达到90%,氨氮去除率达到98%,且运行效果稳定。  相似文献   

5.
研究了二氧化氯氧化处理阿奇霉素废水的影响因素及适宜工艺条件。运用正交实验的方法,得出处理阿奇霉素废水的最佳实验条件:C102投加量为14g/L,催化剂用量5g/L,反应pH值7.0,反应时间2h,COD平均去除率为38.2%。  相似文献   

6.
Fenton试剂处理阿奇霉素废水的研究   总被引:3,自引:0,他引:3  
研究了用Fenton试剂处理阿奇霉素废水的影响因素及适宜工艺条件.试验表明,用Fenton试剂处理阿奇霉素废水的最佳实验条件:反应温度为25℃、pH为3.0、FeSO<,4>投加量为10 mL/L、H<,2>O<,2>投加量为30 mL/L、氧化时间为2.0 h.在此条件下,其对COD的平均去除率达51.09%.  相似文献   

7.
对还原段DSD酸生产废水的处理进行试验研究,提出了混凝-SBR的处理工艺,并确定了相关的最佳运行参数,即混凝阶段硫酸铝投加量为100mg/L,聚丙烯酰胺投加量为10mg/L;SBR反应器中共基质葡萄糖投加量为40mg/L,水力停留时间为6h,pH值为7。还原段DSD生产废水通过混凝沉淀,大大降低了后续生化处理负荷。并在生化阶段,利用共基质原理有效地提高了该废水的可生化性。在最佳试验条件下,在进水COD、NH3-N的质量浓度分别为620、125mg/L,色度为200倍时,COD、NH3-N、色度的去除率分别为84.8%、91.5%和90%。  相似文献   

8.
臭氧-曝气生物滤池工艺深度处理石化废水   总被引:13,自引:0,他引:13  
采用臭氧-曝气生物滤池(BAF)工艺对广东某石化废水经一般生化处理后进行深度处理,以提高废水的可生化性,探讨了废水的初始pH、臭氧投加量和催化剂等因素对臭氧氧化的影响,以及曝气生物滤池不同停留时间对废水COD去除率的影响。结果表明,进水COD约60~80 mg/L,臭氧投加量55.56 mg/L,BAF水力停留时间1.5 h,经组合工艺处理后出水COD低于30 mg/L,达到中水回用标准。  相似文献   

9.
以DOP生产废水为研究对象,考察了投加SDC-03生物填料的厌氧/特异性移动床生物膜反应器对废水COD的去除效果,并探讨了进水COD、水力停留时间(HRT)、溶解氧(DO)3个因素对反应器处理性能的影响。结果表明:在水温18~30℃,进水pH为6.0~8.0,COD为2 500~4 000 mg/L,系统水力停留时间(HRT)为5 d的操作条件下,出水COD可稳定在100 mg/L以下,平均去除率为97.1%,最高可达98.39%。该废水处理工艺运行稳定,各项出水水质指标均满足《污水综合排放标准》(GB 8978—1996)三级排放标准的要求。  相似文献   

10.
设计利用曝气生物法处理经过两级接触氧化的制药废水,研究了曝气生物滤池的启动和水力停留时间、水力负荷及进水COD对废水中COD、NH4+-N去除率的影响。结果表明,在气水体积比为10:1,水力停留时间为12 h时,COD去除率最大;进水COD在320~780 mg/L,COD去除率随进COD的增加而增加;在进水COD为320~780 mg/L,水力停留时间12 h,水力负荷0.23 L/h,气水体积比10:1的条件下,NH4+-N的去除率稳定在45%~56%。出水达到国家生活杂用水标准。  相似文献   

11.
张影  周元祥  李连营 《广东化工》2014,(7):137-138,149
新洋茉莉醛生产废水高COD、高甲醛,是典型的难降解有机废水,生物抑制性强,传统的水处理技术对该种废水的处理能力有限,文章对新洋茉莉醛生产废水采用Fenton氧化实验,确定最佳条件为:pH=3,H2O2与Fe2+最佳摩尔比为5∶1,H2O2最佳投加量为22.5 mL/200 mL废水,反应60 min调为碱性静置40 min后,甲醛去除率达到99%以上,COD去除率达到52.66%,对COD和甲醛都有较好处理效果,有效地提高了废水可生化性,是废水处理技术的主要发展方向之一。  相似文献   

12.
采用多级生物处理-Fenton流化床组合工艺处理某石化企业的炼油污水,重点考察了水力停留时间对多级生物处理系统的影响以及p H、n(H_2O_2)/n(Fe~(2+))、H_2O_2投加量对Fenton流化床处理效果的影响。结果表明,在最佳工艺条件下,当组合工艺总水力停留时间为45 h时,出水COD始终低于30 mg/L,平均COD去除率达到96.54%;出水氨氮维持在0.05 mg/L,平均氨氮去除率为99.72%,处理后出水水质满足《污水综合排放标准》(GB 8978—1996)的一级排放标准。  相似文献   

13.
针对散装液体化学品废水提出了高级氧化技术与生物氧化技术联合使用的工艺.通过工艺比较发现,臭氧氧化与Fenton试剂氧化都具有一定的处理效果,但前者操作容易;生物氧化技术中的曝气生物滤池(BAF)法无论在废水经过臭氧预氧化与否,都比生物接触氧化法对COD更有去除效果,COD去除率接近70%.选择BAF-臭氧-BAF工艺对废水进行处理,前BAF气水比为20:1,水力停留时间在12h,臭氧投加量为550mg·L-1,后BAF气水比为10:1,水力停留时间在24 h时,出水COD浓度低于100 mg·L-1.该工艺的处理成本约为18.9元·m-3.  相似文献   

14.
徐鑫  周元祥  徐良  周凯 《山东化工》2013,(4):11-13,15
以某香精香料生产废水为实验研究对象,采用Fenton-热碱法对其处理效果进行研究,探讨了Fenton-热碱法在不同的pH值、温度、投加量及反应时间对其COD去除率的影响,从而得出该处理方法的最佳工艺条件。研究结果表明:在pH值=3、H2O投加量为20ml/L、FeSO4.7H2O投加量为2g/L、反应时间为3h时COD去除率可达到53%,在pH值=11,温度在100℃、热解时间为15min时COD的去除率可达到40%。在最佳工艺条件下,Fenton-热碱的联合处理COD去除率达77%,为后续生化处理提供有利条件。  相似文献   

15.
采用微波辅助快速芬顿组合工艺,对深圳某废水处理厂复杂有机废水进行芬顿氧化预处理,以达到该厂生化进水指标。实验结果表明,在Fe~(2+)投加量为54 mmol/L,H_2O_2投加量为222 mmol/L,微波功率为6 kW,水力停留时间为10 min的条件下,可使废水COD从7000 mg/L左右处理到2500 mg/L以下,COD去除率可达65%以上,同时废水的可生化性也得到提高。  相似文献   

16.
采用水解酸化-混凝沉淀工艺,对活塞环生产综合废水进行预处理.研究了水解酸化时间、混凝沉淀药剂类型及其投加量等因素对废水COD去除的影响.结果表明,该组合工艺将废水的COD由9 656 mg/L降至3 081.2 mg/L,COD去除率达到67.8%,提高了废水的可生化性,并确定了水解酸化的最佳水力停留时间以及混凝剂的最佳投药比,为活塞环工业废水的大规模处理提供了应用参数.  相似文献   

17.
采用臭氧为主工艺处理垃圾渗滤液纳滤浓缩液,试验结果表明:先通过混凝沉淀、臭氧氧化,再采用MBR处理,可取得良好的处理效果。当三氯化铁的投加量为2 kg/m3,PAM的投加量为0.1 kg/m3,絮凝时间在30~40 min,沉淀时间2~3 h的条件下,混凝沉淀COD的去除率为45%~60%;臭氧用量在25 g/h,水力停留时间为90 min左右,B/C比可提高至0.45;氧化后废水在MBR作用下出水COD为1000 mg/L左右,COD去除率为50%;如出水达到GB16889-2008标准限值的要求,需增加深度处理。  相似文献   

18.
Fenton试剂-活性炭吸附处理焦化废水的研究   总被引:4,自引:0,他引:4  
王春敏  吴少艳  王维军 《辽宁化工》2006,35(7):388-390,406
对Fenton试剂-活性炭吸附联用技术处理焦化废水进行了研究。首先考察了pH值、H2O2投加量、[Fe^2+]/[H2O2]等因素对Fenton试剂氧化处理效果的影响以及Fenton试剂氧化阶段H2O2投加量对活性炭吸附效果的影响;然后考察活性炭投加量、吸附时间、pH值等因素对活性炭吸附阶段处理效果的影响。结果表明,Fenton试剂-活性炭吸附工艺处理焦化废水的最佳操作条件为:Fenton试剂氧化阶段H2O2投加量为55mmol/L,[Fe^2+]/[H2O2]=1:10,初始pH=3;活性炭吸附阶段活性炭投加量为2.5g/L,pH=3,吸附时间30min。在此操作条件下,焦化废水COD去除率达97.5%。  相似文献   

19.
采用NaClO催化氧化法对橡胶促进剂生产废水进行预处理,研究pH值、NaClO投加量、反应时间及活性炭投加量对COD去除率的影响。结果表明,NaClO催化氧化法处理该废水的最佳反应条件为:pH值4,NaClO投加量10mL/L,活性炭用量15g/L,反应时间为1h。除胺、酸化及NaClO催化氧化后,COD去除率达66.70%。  相似文献   

20.
采用催化湿式氧化-生化组合工艺处理三氯吡啶生产废水,经小试考察,确定催化湿式氧化工艺最佳操作条件为:反应温度为250℃,反应压力为5.0MPa,催化剂投加量为1000mg/L。在上述条件下,三氯吡啶废水有机氮转化率80%,COD去除率60%,催化湿式氧化预处理后废水可生化性显著提高,经催化湿式氧化-生化组合工艺处理有利于达标排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号