首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the increasing popularity of cloud computing services, the more number of cloud data centers are constructed over the globe. This makes the power consumption of cloud data center elements as a big challenge. Hereby, several software and hardware approaches have been proposed to handle this issue. However, this problem has not been optimally solved yet. In this paper, we propose an online cloud resource management with live migration of virtual machines (VMs) to reduce power consumption. To do so, a prediction‐based and power‐aware virtual machine allocation algorithm is proposed. Also, we present a three‐tier framework for energy‐efficient resource management in cloud data centers. Experimental results indicate that the proposed solution reduces the power consumption; at the same time, service‐level agreement violation (SLAV) is also improved.  相似文献   

2.
The cloud computing environment is a real‐time communication network that involves a large number of systems connected in a distributed fashion, for which resources are available on demand. In recent years, due to the enormous growth of data and information, data maintenance tasks involve a major effort in information technology (IT) industries. So, IT industries are concentrating on the cloud computing environment in order to maintain their data and manage their resources. Owing to the increase in the number of data centres, which have an impact on electrical energy cost, peak power dissipation, cooling and carbon emission, power‐conservation‐based resource management is essential. A best‐fit heuristic job placement algorithm is proposed in this paper in order to increase the job allocation percentage, a worst‐fit heuristic virtual machine (VM) placement algorithm is also proposed in order to place the VMs over the physical machines (PMs) thereby reducing the number of the latter allotted, and a server consolidation algorithm is proposed in order to improve power conservation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Service‐oriented architecture (SOA) has a crucial role in backing productive cloud services. Also, the vast spread of the theoretical notion of diverse businesses (like e‐commerce) into the actual use has been recently applied by cloud computing. The service functionality could be affected by overfilling of the network traffic because of the broadly dispersed nature of e‐commerce in clouds—a key challenge for immediate jobs. Throughout the last decade, a vast range of applications or large‐scale operators has increasingly attracted to migrate the services in clouds. An effective method for accessing the applications throughout standard business hours is continually moving virtual machine containers from one data center to another. Now, with the commonness of cloud computing, many applications have been moved to the cloud fully/partly. It can be handled through the migration of cloud services to diverse platforms in a way that minimizes the communication cost of e‐commerce. As this issue has an NP‐hard nature, in the present article, we present an automatic smart service migration outline through the ant colony optimization (ACO) algorithm on cloud‐oriented e‐commerce. In the presented model, we use the ACO algorithm to take the finest (near‐optimal) service migration decisions. Based on the obtained results, the proposed technique has the optimal number of migrations compared to the existing models.  相似文献   

4.
Cloud computing makes it possible for users to share computing power. The framework of multiple data centers gains a greater popularity in modern cloud computing. Due to the uncertainty of the requests from users, the loads of CPU(Center Processing Unit) of different data centers differ. High CPU utilization rate of a data center affects the service provided for users, while low CPU utilization rate of a data center causes high energy consumption. Therefore, it is important to balance the CPU resource across data centers in modern cloud computing framework. A virtual machine(VM)migration algorithm was proposed to balance the CPU resource across data centers. The simulation results suggest that the proposed algorithm has a good performance in the balance of CPU resource across data centers and reducing energy consumption.  相似文献   

5.
In recent years, the increasing use of cloud services has led to the growth and importance of developing cloud data centers. One of the challenging issues in the cloud environments is high energy consumption in data centers, which has been ignored in the corporate competition for developing cloud data centers. The most important problems of using large cloud data centers are high energy costs and greenhouse gas emission. So, researchers are now struggling to find an effective approach to decreasing energy consumption in cloud data centers. One of the preferred techniques for reducing energy consumption is the virtual machines (VMs) placement. In this paper, we present a VM allocation algorithm to reduce energy consumption and Service Level Agreement Violation (SLAV). The proposed algorithm is based on best‐fit decreasing algorithm, which uses learning automata theory, correlation coefficient, and ensemble prediction algorithm to make better decisions in VM allocation. The experimental results indicated improvement regarding energy consumption and SLAV, compared with well‐familiar baseline VM allocation algorithms.  相似文献   

6.
Cloud computing introduced a new paradigm in IT industry by providing on‐demand, elastic, ubiquitous computing resources for users. In a virtualized cloud data center, there are a large number of physical machines (PMs) hosting different types of virtual machines (VMs). Unfortunately, the cloud data centers do not fully utilize their computing resources and cause a considerable amount of energy waste that has a great operational cost and dramatic impact on the environment. Server consolidation is one of the techniques that provide efficient use of physical resources by reducing the number of active servers. Since VM placement plays an important role in server consolidation, one of the main challenges in cloud data centers is an efficient mapping of VMs to PMs. Multiobjective VM placement is generating considerable interest among researchers and academia. This paper aims to represent a detailed review of the recent state‐of‐the‐art multiobjective VM placement mechanisms using nature‐inspired metaheuristic algorithms in cloud environments. Also, it gives special attention to the parameters and approaches used for placing VMs into PMs. In the end, we will discuss and explore further works that can be done in this area of research.  相似文献   

7.

Distributed computing has risen as a well-known worldview for facilitating an assortment of online applications and services. The present business distributed computing stages utilize a semi concentrated design, where cloud resources, such as servers and storage are hosted in a few large global data centers. Virtualization in computing is a creation of virtual (not real) of something such as hardware, software, platform or an operating system or storage, or a network device. Further, Virtual Machine (VM) technology has recently emerged as an essential building block for data centers and cluster systems, mainly due to its capabilities of isolating, consolidating, and migrating workload. Migration of VM seeks to improve the manageability, performance, and fault tolerance of systems. In a virtual cloud computing environment, a set of submitted tasks from different users are scheduled on a set of Virtual Machines (VMs), and load balancing has become a critical issue for achieving energy efficiency. Thus to solve this issue and to achieve a good load balance, a new improved optimization algorithm is introduced namely Dual Conditional Moth Flame Algorithm (DC-MFA) that takes into account of proposed multi-objective functions defining the multi-constraints like CPU utilization, energy consumption, security, make span, migration cost, and resource cost. The performance of the proposed model will be analyzed by determining migration cost, energy consumption, and response time, and security analysis as well.

  相似文献   

8.
Cloud computing provides high accessibility, scalability, and flexibility in the era of computing for different practical applications. Internet of things (IoT) is a new technology that connects the devices and things to provide user required services. Due to data and information upsurge on IoT, cloud computing is usually used for managing these data, which is known as cloud‐based IoT. Due to the high volume of requirements, service diversity is one of the critical challenges in cloud‐based IoT. Since the load balancing issue is one of the NP‐hard problems in heterogeneous environments, this article provides a new method for response time reduction using a well‐known grey wolf optimization algorithm. In this paper, we supposed that the response time is the same as the execution time of all the tasks that this parameter must be minimized. The way is determining the status of virtual machines based on the current load. Then the tasks will be removed from the machine with the additional load depending on the condition of the virtual machine and will be transferred to the appropriate virtual machine, which is the criterion for assigning the task to the virtual machine based on the least distance. The results of the CloudSim simulation environment showed that the response time is developed in compared to the HBB‐LB and EBCA‐LB algorithm. Also, the load imbalancing degree is improved in comparison to TSLBACO and HJSA.  相似文献   

9.
Cloud computing has drastically reduced the price of computing resources through the use of virtualized resources that are shared among users. However, the established large cloud data centers have a large carbon footprint owing to their excessive power consumption. Inefficiency in resource utilization and power consumption results in the low fiscal gain of service providers. Therefore, data centers should adopt an effective resource-management approach. In this paper, we present a novel load-balancing framework with the objective of minimizing the operational cost of data centers through improved resource utilization. The framework utilizes a modified genetic algorithm for realizing the optimal allocation of virtual machines (VMs) over physical machines. The experimental results demonstrate that the proposed framework improves the resource utilization by up to 45.21%, 84.49%, 119.93%, and 113.96% over a recent and three other standard heuristics-based VM placement approaches.  相似文献   

10.
在云计算中,系统规模和虚拟机迁移数量都是十分庞大的,需要高效的调度策略对其进行优化。将云计算的任务分配抽象为背包求解问题,可通过遗传算法进行求解。传统的遗传算法具有局部搜索能力差以及早熟现象的缺点,本文采用遗传和贪婪相结合的混合遗传算法。针对混合遗传算法在资源利用率与能源消耗的收敛速度较慢问题,本文通过改进适应度函数,改变了适应度函数在不同染色体间的差异度,从而提高了染色体在选择算子中的择优性能。仿真结果表明,该方法能够有效提高混合遗传算法在云计算资源优化中的收敛速度。  相似文献   

11.
The problem of efficient placement of virtual machines (VMs) in cloud computing infrastructure is well studied in the literature. VM placement decision involves selecting a physical machine in the data center to host a specific VM. This decision could play a pivotal role in yielding high efficiency for both the cloud and its users. Also, reallocation of VMs could be performed through migrations to achieve goals like higher server consolidation or power saving. VM placement and reallocation decisions may consider affinities such as memory sharing, CPU processing, disk sharing, and network bandwidth requirements between VMs defined in multiple dimensions. Considering the NP‐hard complexity associated with computing an optimal solution for this VM placement decision problem, existing research employs heuristic‐based techniques to compute an efficient solution. However, most of these approaches are restricted to only a single attribute at a time. That is, a given technique of using heuristics to compute VM placement considers only a single attribute, while completely ignoring the impact of other dimensions of placing VMs. While this approach may improve the efficiency with respect to the affinity attribute in consideration, it may yield degraded performance with respect to other affinities. In addition, the criteria for determining VM‐placement efficiency may vary for different applications. Hence, the overall goal of achieving VM placement efficiency becomes difficult and challenging. We are motivated by this challenging problem of efficient VM placement and propose policy‐aware virtual machine management (PAVM), a generic framework that can be used for efficient VM management in a cloud computing platform based on the service provider‐defined policies to achieve the desired system‐wide goals. This involves efficient means to profile different VM affinities and to use profiled information effectively by intelligent and efficient VM migrations at run time considering multiple attributes at a time. By conducting extensive evaluation through simulation and real experiments that involve VM affinities on the basis of network and memory, we confirmed that the PAVM architecture is capable of improving the efficiency of a cloud system. We elaborate the architecture of a PAVM system, describe its implementation, and present details of our experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
With the rapid development of cloud computing, the number of cloud users is growing exponentially. Data centers have come under great pressure, and the problem of power consumption has become increasingly prominent. However, many idle resources that are geographically distributed in the network can be used as resource providers for cloud tasks. These distributed resources may not be able to support the resource‐intensive applications alone because of their limited capacity; however, the capacity will be considerably increased if they can cooperate with each other and share resources. Therefore, in this paper, a new resource‐providing model called “crowd‐funding” is proposed. In the crowd‐funding model, idle resources can be collected to form a virtual resource pool for providing cloud services. Based on this model, a new task scheduling algorithm is proposed, RC‐GA (genetic algorithm for task scheduling based on a resource crowd‐funding model). For crowd‐funding, the resources come from different heterogeneous devices, so the resource stability should be considered different. The scheduling targets of the RC‐GA are designed to increase the stability of task execution and reduce power consumption at the same time. In addition, to reduce random errors in the evolution process, the roulette wheel selection operator of the genetic algorithm is improved. The experiment shows that the RC‐GA can achieve good results.  相似文献   

13.
Data centers play a crucial role in the delivery of cloud services by enabling on‐demand access to the shared resources such as software, platform and infrastructure. Virtual machine (VM) allocation is one of the challenging tasks in data center management since user requirements, typically expressed as service‐level agreements, have to be met with the minimum operational expenditure. Despite their huge processing and storage facilities, data centers are among the major contributors to greenhouse gas emissions of IT services. In this paper, we propose a holistic approach for a large‐scale cloud system where the cloud services are provisioned by several data centers interconnected over the backbone network. Leveraging the possibility to virtualize the backbone topology in order to bypass IP routers, which are major power consumers in the core network, we propose a mixed integer linear programming (MILP) formulation for VM placement that aims at minimizing both power consumption at the virtualized backbone network and resource usage inside data centers. Since the general holistic MILP formulation requires heavy and long‐running computations, we partition the problem into two sub‐problems, namely, intra and inter‐data center VM placement. In addition, for the inter‐data center VM placement, we also propose a heuristic to solve the virtualized backbone topology reconfiguration computation in reasonable time. We thoroughly assessed the performance of our proposed solution, comparing it with another notable MILP proposal in the literature; collected experimental results show the benefit of the proposed management scheme in terms of power consumption, resource utilization and fairness for medium size data centers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Side-channel attacks were the main ways of multi-tenant information leakage in the cloud computing and data center environments.The existing defense approaches based on dynamic migration of virtual machine have long convergence time of migration algorithm and high migration cost.Hence,a dynamic migration of virtual machine based on security level was proposed.Firstly,security level classification of virtual machines was used to reduce the number of migrating virtual machines.Then the corresponding virtual machines embedding strategy was used to reduce the frequency of virtual machines migration.Simulation experiments demonstrate that the proposed approach can reduce convergence time of migration algorithm and migration cost.  相似文献   

15.

Virtual Machine (VM) Migration has been popular nowadays, as it helps to balance the load effectively. Various VM migration-based approaches are modeled for better VM placement but remain the challenge because of inappropriate load balancing. Thus, workload prediction-based VM migration is introduced to improve the energy efficiency of the system. Importantly, load prediction is very important to enhance resource allocation and utilization. Chaotic Fruitfly Rider Neural Network is devised by combining Rider neural network and chaotic Fruitfly optimization algorithm to predict load. Moreover, the fitness for predicting the load is based on old-time load, resource constraint, and network parameters. Once the load is predicted, the power optimization is performed using VM migration and optimal switching strategy. When the load is found overloaded, the VM migration is performed using the proposed Harris Hawks spider monkey optimization (HHSMO). Thus, the optimal finding of VM for executing the removed task is found out using the proposed HHSMO. The fitness function utilized for the VM migration is based on power, load, and resource parameter. If the load predicted is underloaded, the optimal switch ON/OFF is done optimally by switch ON/OFF the servers using the proposed HHSMO algorithm. Through the migration and switching strategy, the power consumption is optimized. The performance of the proposed model is evaluated in terms of power consumption, load, and resource utilization. The proposed HHSMO achieves the minimal power consumption of 0.0181, the minimal load of 0.002, and the minimal resource utilization of 0.0376.

  相似文献   

16.
为进一步提升异构云数据中心网络(DCN)动态管理的科学性,在总结当前主流研究局限性的基础上构思一种基于全局相对最优化的绿色虚拟算法.算法综合考虑虚拟机迁移过程中可能涉及到的诸多客观因素,通过科学地规划时间门限、主机筛选策略、以及精度比较机制对虚拟机实施高效的迁移.数据考察表明,所部署的算法不仅可快速精确地物色到最适宜的...  相似文献   

17.
Cloud computing environment allows presenting different services on the Internet in exchange for cost payment. Cloud providers can minimize their operational costs by auto‐scaling of the computational resources based on demand received from users. However, the time and cost required to increase and decrease the number of active computational resources are among the biggest limitations of scalability. Thus, auto‐scaling is considered as one of the most important challenges in the field of cloud computing. The present study aimed to present a new solution to automatic scalability of resources for multilayered cloud applications under the Monitor‐Analysis‐Plan‐Execute‐Knowledge loop. In addition, the Google penalty payment model was used to model the penalty costs in the problem and to accurately evaluate the earned profit. A hybrid resource load prediction algorithm was proposed to evaluate the future of resources in each cloud layer. Further, we used statistical solution to determine the statuses of VMs in addition to presenting a risk‐aware algorithm to allocate the user requests to active resources. The experimental results by Cloudsim indicated the improvement of the proposed approach in terms of operational costs, the number of used resources, and the amount of profit.  相似文献   

18.
Cloud computing has emerged as a promising technique to provide storage and computing component on‐demand services over a network. In this paper, we present an energy‐saving algorithm using the Kalman filter for cloud resource management to predict the workload and to further achieve high resource availability with low service level agreement. Using the proposed algorithm, one can estimate the potential future workload trend then predict the computing component workload utilizations and further retrench energy consumption and achieve load balancing in a cloud system. Experimental results show that the proposed algorithm achieves more than 92.22% accuracy in the computing component workload prediction, improves 55.11% energy in energy consumption, and has 3.71% in power prediction error rate, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
As cloud computing models have evolved from clusters to large-scale data centers, reducing the energy consumption, which is a large part of the overall operating expense of data centers, has received much attention lately. From a cluster-level viewpoint, the most popular method for an energy efficient cloud is Dynamic Right Sizing (DRS), which turns off idle servers that do not have any virtual resources running. To maximize the energy efficiency with DRS, one of the primary adaptive resource management strategies is a Virtual Machine (VM) migration which consolidates VM instances into as few servers as possible. In this paper, we propose a Two Phase based Adaptive Resource Management (TP-ARM) scheme that migrates VM instances from under-utilized servers that are supposed to be turned off to sustainable ones based on their monitored resource utilizations in real time. In addition, we designed a Self-Adjusting Workload Prediction (SAWP) method to improve the forecasting accuracy of resource utilization even under irregular demand patterns. From the experimental results using real cloud servers, we show that our proposed schemes provide the superior performance of energy consumption, resource utilization and job completion time over existing resource allocation schemes.  相似文献   

20.

In cloud computing, more often times cloud assets are underutilized because of poor allocation of task in virtual machine (VM). There exist inconsistent factors affecting the scheduling tasks to VMs. In this paper, an effective scheduling with multi-objective VM selection in cloud data centers is proposed. The proposed multi-objective VM selection and optimized scheduling is described as follows. Initially the input tasks are gathered in a task queue and tasks computational time and trust parameters are measured in the task manager. Then the tasks are prioritized based on the computed measures. Finally, the tasks are scheduled to the VMs in host manager. Here, multi-objectives are considered for VM selection. The objectives such as power usage, load volume, and resource wastage are evaluated for the VMs and the entropy is calculated for the measured objectives and based on the entropy value krill herd optimization algorithm prioritized tasks are scheduled to the VMs. The experimental results prove that the proposed entropy based krill herd optimization scheduling outperforms the existing general krill herd optimization, cuckoo search optimization, cloud list scheduling, minimum completion cloud, cloud task partitioning scheduling and round robin techniques.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号