首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 4 毫秒
1.
A highly selective impedance transformation filtering technique suitable for tunable selective RF receivers is presented in this paper. To achieve blocker rejection comparable with surface acoustic wave (SAW) filters, we use a two‐stage architecture based on a low‐noise transconductance amplifier (LNTA). The filter rejection is captured by a linear periodically varying model that includes band limitation by the LNTA output impedance and the related parasitic capacitances of the impedance transformation circuit. This model is also used to estimate ‘back folding’ by interferers placed at harmonic frequencies. Discussed is also the effect of thermal noise folding and phase noise on the circuit noise figure. As a proof of concept, a chip design of a tunable RF front end using 65 nm complementary metal‐oxide‐semiconductor (CMOS) technology is presented. In measurements, the circuit achieves blocker rejection competitive to SAW filters with noise figure 3.2–5.2 dB, out of band IIP3 > +17 dBm, and blocker P1dB > +5 dBm over frequency range of 0.5–3 GHz. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This work proposes a cross‐correlation‐based trans‐impedance amplifier for current noise measurements in the low‐frequency range. The proposed solution is compared with the classical cross‐correlation trans‐impedance amplifier showing a lower background noise. Furthermore, a three‐step measurement method, based on the new trans‐impedance amplifier, is proposed to cancel the residual background noise. SPICE simulations and noise measurements performed on prototype circuits demonstrate the validity of the proposed approach. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A CMOS amplifier employing the frequency selective feedback technique using a shunt feedback capacitor is designed and measured. The proposed amplifier can achieve a high IIP3 (input referred third‐order intercept point) by reducing the third‐ and second‐order nonlinearity contributions to the IMD3 (third‐order intermodulation distortion), which is accomplished using a capacitor as the frequency selective element. Also, the shunt feedback capacitor improves the noise performance of the amplifier. By applying the technique to a cascode LNA using 0.18‐µm CMOS technology, we obtain the NF of 0.7 dB, an IIP3 of +8.2 dBm, and a gain of 15.1 dB at 14.4 mW of power consumption at 900 MHz. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, a low‐power, low‐noise logarithmic preamplifier for biopotential and neural recording application is presented. The amplifier is based on a linear limit logarithmic amplifier technique, and an active filter as a DC cancellation filter has been included to its input in order to eliminate DC offsets, which are produced at the electrode–tissue interface. This system has been simulated in a UMC standard 90‐nm 1P9M CMOS process. Five dual gain stages are used to produce the required linear limit logarithmic amplifier. The dynamic range of the amplifier is measured to be 48 dB which covers the signals with amplitude from 20 μV to 5 mV. The amplifier consumes 23.5 μW from a 1.2‐V power supply and has a maximum gain of 69.8 dB. The simulated input referred noise is 5.3 μV over 0.1 Hz to 20 kHz. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, CMOS‐based low‐noise amplifiers with JFET‐CMOS technology for high‐resolution sensor interface circuits are presented. A differential difference amplifier (DDA) configuration is employed to realize differential signal amplification with very high input impedance, which is required for the front‐end circuit in many sensor applications. Low‐noise JFET devices are used as input pair of the input differential stages or source‐grounded output load devices, which are dominant in the total noise floor of DDA circuits. A fully differential amplifier circuit with pure CMOS DDA and three types of JFET‐CMOS DDAs were fabricated and their noise performances were compared. The results show that the total noise floor of the JFET‐CMOS amplifier was much lower compared to that of the pure CMOS configuration. The noise‐reduction effect of JFET replacement depends on the circuit configuration. The noise reduction effect by JFET device was maximum of about − 18 dB at 2.5 Hz. JFET‐CMOS technology is very effective in improving the signal‐to‐noise ratio (SNR) of a sensor interface circuit with CMOS‐based sensing systems. © 2008 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

6.
Low‐frequency (flicker) noise is one of the most important issues in the design of direct‐conversion zero‐IF front‐ends. Within the front‐end building blocks, the direct‐conversion mixer is critical in terms of flicker noise, since it performs the signal down‐conversion to baseband. This paper analyzes the main sources of low‐frequency noise in Gilbert‐cell‐based direct‐conversion mixers, and several issues for minimizing the flicker noise while keeping a good mixer performance in terms of gain, noise figure and power consumption are introduced in a quantitative manner. In order to verify these issues, a CMOS Gilbert‐cell‐based zero‐IF mixer has been fabricated and measured. A flicker noise as low as 10.4 dB is achieved (NF at 10 kHz) with a power consumption of only 2 mA from a 2.7 V power supply. More than 14.6 dB conversion gain and noise figure lower than 9 dB (DSB) are obtained from DC to 2.5 GHz with an LO power of ?10 dBm, which makes this mixer suitable for a multi‐standard low‐power zero‐IF front‐end. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A low noise and high linearity down‐conversion CMOS mixer for 2.4‐GHz wireless receiver is presented in this paper. Using a sub‐harmonic balun with a simple but effective B‐type amplifier, the local oscillator frequency required for this mixer has been reduced by half, and the input local oscillator signal could be single‐ended rather than differential, which simultaneously simplifies the design of local oscillator. A distortion and noise cancelation transconductor in association with current bleeding technique is employed to improve the noise and linearity of the entire mixer under a reduced bias current without compromising the voltage gain. Fabricated in a 0.18‐µm RF CMOS technology of Global Foundries, the mixer demonstrates a voltage gain of 15.8 dB and input‐referred third‐order intercept point of 6.6 dBm with a noise figure of 2.6 dB. It consumes 7.65 mA from a 1.0‐V supply and occupies a compact area of 0.75 × 0.71 mm2 including all test pads. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a 40 M–1000 MHz 77.2‐dB spurious free dynamic range (SFDR) CMOS RF variable gain amplifier (VGA) has been presented for digital TV tuner applications. The proposed RFVGA adopts a wideband operational‐amplifier‐based VGA and a wideband buffer with differential multiple gated transistor linearization method for wideband operation and high linearity. The SFDR of the proposed RFVGA is also analyzed in detail. Fabricated in a 0.13‐µm CMOS process, the RFVGA provides 31‐dB gain range with 1‐dB gain step, a minimum noise figure of 7.5 dB at a maximum gain of 27 dB, and maximum in‐band output‐referred third‐order intercept point of 27.7 dBm, while drawing an average current of 27.8 mA with a supply voltage of 3.3 V. The chip core area is 0.54 mm × 0.4 mm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号