首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-hop vehicle-to-vehicle communication is useful for supporting many vehicular applications that provide drivers with safety and convenience. Developing multi-hop communication in vehicular ad hoc networks (VANET) is a challenging problem due to the rapidly changing topology and frequent network disconnections, which cause failure or inefficiency in traditional ad hoc routing protocols. We propose an adaptive connectivity aware routing (ACAR) protocol that addresses these problems by adaptively selecting an optimal route with the best network transmission quality based on statistical and real-time density data that are gathered through an on-the-fly density collection process. The protocol consists of two parts: 1) select an optimal route, consisting of road segments, with the best estimated transmission quality, and 2) in each road segment of the chosen route, select the most efficient multi-hop path that will improve the delivery ratio and throughput. The optimal route is selected using our transmission quality model that takes into account vehicle densities and traffic light periods to estimate the probability of network connectivity and data delivery ratio for transmitting packets. Our simulation results show that the proposed ACAR protocol outperforms existing VANET routing protocols in terms of data delivery ratio, throughput and data packet delay. Since the proposed model is not constrained by network densities, the ACAR protocol is suitable for both daytime and nighttime city VANET scenarios.  相似文献   

2.
Mobile ad hoc networks (MANETs) are independent networks, where mobile nodes communicate with other nodes through wireless links by multihop transmission. Security is still an issue to be fixed in MANETs. Hence, a routing protocol named encrypted trust‐based dolphin glowworm optimization (DGO) (E‐TDGO) is designed using Advanced Encryption Standard‐128 (AES‐128) and trust‐based optimization model for secure routing in MANET. The proposed E‐TDGO protocol includes three phases, namely, k‐path discovery, optimal path selection, and communication. At first, k paths are discovered based on the distance and the trust level of the nodes. From the k paths discovered, the optimal path is selected using a novel algorithm, DGO, which is developed by combining glowworm swarm optimization (GSO) algorithm and dolphin echolocation algorithm (DEA). Once the optimal path is selected, communication begins in the network such that E‐TDGO protocol ensures security. The routing messages are encrypted using AES‐128 with shared code and key to offer security. The experimental results show that the proposed E‐TDGO could attain throughput of 0.11, delay of 0.01 second, packet drop of 0.44, and detection rate of 0.99, at the maximum number of rounds considered in the network of 75 nodes with attack consideration.  相似文献   

3.
Vehicular ad hoc network (VANET) is an emerging wireless communications technology that is capable of enhancing driving safety and velocity by exchanging real-time transportation information. In VANETs, the carry-and-forward strategy has been adopted to overcome uneven distribution of vehicles. If the next vehicle located is in transmission range, then the vehicle forwards the packets; if not, then it carries the packets until meeting. The carry mostly occurs on sparsely populated road segments, with long carry distances having long end-to-end packet delays. Similarly, the dense condition could have long delays, due to queuing delays. The proposed intersection-based routing protocol finds a minimum delay routing path in various vehicle densities. Moreover, vehicles reroute each packet according to real-time road conditions in each intersection, and the packet routing at the intersections is dependent on the moving direction of the next vehicle. Finally, the simulation results show that the proposed Intersection-Based Routing (IBR) protocol has less end-to-end delay compared to vehicle-assisted data delivery (VADD) and greedy traffic aware routing protocol (GyTAR) protcols.  相似文献   

4.
In this paper, we develop a delay‐centric parallel multi‐path routing protocol for multi‐hop cognitive radio ad hoc networks. First, we analyze the end‐to‐end delay of multi‐path routing based on queueing theory and present a new dynamic traffic assignment scheme for multi‐path routing with the objective of minimizing end‐to‐end delay, considering both spectrum availability and link data rate. The problem is formulated as a convex problem and solved by a gradient‐based search method to obtain optimal traffic assignments. Furthermore, a heuristic decentralized traffic assignment scheme for multi‐path routing is presented. Then, based on the delay analysis and the 3D conflict graph that captures spectrum opportunity and interference among paths, we present a route discovery and selection scheme. Via extensive NS2‐based simulation, we show that the proposed protocol outperforms the benchmark protocols significantly and achieves the shortest end‐to‐end delay. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Recently, by using vehicle-to-vehicle and vehicle-to-infrastructure communications for VANET/ITS, the cooperative active safety driving (ASD) providing vehicular traffic information sharing among vehicles significantly prevents accidents. Clearly, the performance analysis of ASD becomes difficult because of high vehicle mobility, diverse road topologies, and high wireless interference. An inaccurate analysis of packet connectivity probability significantly affects and degrades the VANET/ITS performance. Especially, most of related studies seldom concern the impact factors of vehicular accidents for the performance analyses of VANET/ITS. Thus, this paper proposes a two-phase approach to model a distributed VANET/ITS network with considering accidents happening on roads and to analyze the connectivity probability. Phase 1 proposes a reliable packet routing and then analyzes an analytical model of packet connectivity. Moreover, the analysis is extended to the cases with and without exhibiting transportation accidents. In phase 2, by applying the analysis results of phase 1 to phase 2, an adaptive vehicle routing, namely adaptive vehicle routing (AVR), is proposed for accomplishing dynamic vehicular navigation, in which the cost of a road link is defined in terms of several critical factors: traffic density, vehicle velocity, road class, etc. Finally, the path with the least path cost is selected as the optimal vehicle routing path. Numerical results demonstrate that the analytical packet connectivity probability and packet delay are close to that of simulations. The yielded supreme features justify the analytical model. In evaluations, the proposed approach outperforms the compared approaches in packet connectivity probability, average travel time, average exhausted gasoline. However, the proposed approach may lead to a longer travel distance because it enables the navigated vehicle to avoid traversing via the roads with a higher traffic density.  相似文献   

6.
Vehicular Adhoc Network (VANET) is playing a vital role in recent research. Designing an effective routing protocol for VANET is a challenging task as the VANET nodes move very fast. The design of the routing protocol normally is particular to the specific topology. This paper proposes CLMR, a multipath routing protocol based on cross layer design and also using Redundant Array Inexpensive Disks (RAID). Cross layer is designed among application, network, Media Access Control, and physical layers. It is employed to reduce the end to end delay in network, and RAID is used to minimize the number of re‐transmissions. Three variations of RAID 1 are implemented—Distributed Parity along Single path, Double Distributed Parity, and Distributed Parity among Multiple paths. Multipath routing protocol based on cross layer‐Distributed Parity along Single path recovers 1 packet loss per parity packet along the corresponding path, CLMR‐Double Distributed Parity recovers 2 packets per parity packet along the corresponding path, and CLMR‐Distributed Parity among Multiple paths recovers the packets of the failed path. The evaluation is carried out to test the Quality of Service parameters‐end to end delay, throughput, packet delivery ratio, and number of retransmissions. The results projected show that the CLMR performs better when compared with the legacy protocol Adhoc On‐demand Multipath Distance Vector Routing.  相似文献   

7.
车载自组织网络(VANET)技术发展迅速,但由于其特殊的节点类型和信道特性,采用传统AdHoc网络路由协议无法取得满意的性能。实现高速可靠的数据传输速率,需要研究新兴的路由算法。基于贪婪算法的地理位置辅助路由是目前VANET路由的主流思路。文章认为基于这类思路的协议利用车载GPS装置、电子地图和下一代网络导航技术,能使路由发现和建立的时间大大缩短;结合已知的道路拓扑结构,选择多跳传输的最优路径,能避免路边建筑物的屏蔽效应,改善信道条件;动态评估道路上的车流密度,选择可靠性最高的传输路径,能很好地降低传输时延,提高网络吞吐能力。  相似文献   

8.
苟先太  易峰  吴潜  龙刚  金炜东 《通信技术》2010,43(10):68-72
小卫星星座网络需要具有很好的容错抗毁能力,同时对于不同业务流能选择不同的优化路径进行传输。提出使用多拓扑路由技术解决小卫星星座网络的网络保护和流量优化传输问题。在STK和OPNET平台上设计了小卫星星座网络模型和多拓扑路由协议,并进行了仿真实验。仿真结果验证了星座网络的容错保护功能和对不同业务流的多路径路由选择功能。  相似文献   

9.
Vehicular Ad-hoc network (VANET) is a self-organized ad hoc network. VANET becomes a most challenging research area as it has several issues related to routing protocols, quality of service, security, etc. Vehicular communication is critically unsafe to several kinds of active and passive routing attacks. This paper analyzes the impact of a compromised node (vehicle) on zone routing protocol and ad-hoc on-demand distance vector, and recommends a suitable solution called secure vehicular on demand routing to find out and mitigate the black hole attack. The given study analyses the effect of vehicle density on the average throughput, packet delivery ratio, end-to-end delay, normalized routing load and average path length.  相似文献   

10.
Liu  Pingzeng  Wang  Xiujuan  Wen  Fujiang  Liu  Yuqi  Sun  Zhanquan  Zhang  Chao  Yan  Maoling  Fan  Linqiang 《Wireless Personal Communications》2018,102(1):275-292
Vehicular ad-hoc network (VANET) is an emerging paradigm for road transportation which minimizes traffic, accidents and improves fuel efficiency. VANET uses the position of the vehicle obtained from satellite system such as global positioning system (GPS), global navigation satellite system, Compass and Galileo as a location id in position-based routing protocol. The position obtained from the satellite system is likely to have an error due to environmental and technical issues which effect the routing performance. Thus, this paper proposes a position-based routing protocol which uses Kalman filter based location prediction technique to improve routing performance by minimizing location error. The routing protocol performance is evaluated on NS-3.23 simulator with real time GPS traces and simulator generated mobility on Two-ray ground and Winner-II propagation model for 500 m transmission range. Further, performance is compared with other prediction-based routing protocol on the metrics of packet delivery ratio, average delay and throughput.  相似文献   

11.
The characteristics of vehicular ad hoc networks (VANETs) make the design of routing protocol a great challenge. In this paper, we propose a vehicle density and load aware routing protocol for VANETs called VDLA. VDLA adopts sequential selection of junctions to construct the route. The selection is based on the real‐time vehicle density, the traffic load, and the distance to the destination. The network information is collected by a decentralized mechanism. Through factoring in these metrics, the packets are avoided being sent to roads where network is disconnected, and the network load is balanced to mitigate network congestion. The intermediate junctions are selected before the packet reaches a junction to reduce the unnecessary hops. Our study also investigates the impact of the high mobility of the nodes. An analytical framework is proposed to analyze the mobility. Based on the analysis, the traditional Hello scheme is enhanced to improve the accuracy of the neighbor table. In the simulation, we compare VDLA with greedy perimeter coordinator routing and GpsrJ+, which are geographic routings protocols proposed for VANETs. The results validate the superiority of VDLA in terms of end‐to‐end delay and packet delivery rate. And the superiority holds in different scenarios. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A stable and reliable routing mechanism for vehicular ad hoc networks (VANETs) is an important step toward the provision of long data transmission applications, such as file sharing and music download. Traditional mobile ad hoc network (MANET) routing protocols are not suitable for VANET because the mobility model and environment of VANET are different from those of traditional MANET. To solve this problem, we proposed a new stable routing algorithm, called stable directional forward routing. The novelty of the proposed routing protocol is its combining direction broadcast and path duration prediction into ad hoc on-demand distance vector routing protocols, which including: (1) Nodes in VANET are grouped based on the position, only nodes in a given direction range participating in the route discovery process to reduce the frequency of flood requests, (2) Route selection is based on the link duration while not the hops or other metrics to increase the path duration, (3) Route discovery is executed before the path expiration in order to decrease the end to end delay. The performance of the new scheme is evaluated through extensive simulations with Qualnet. Simulation results indicate the benefits of the proposed routing strategy in terms of decreasing routing control packet, reducing the number of link-breakage events, improving the packet delivery ratio and decreasing the end-to-end delay.  相似文献   

13.
市车载网环境下车辆的高速移动以及街道障碍物阻挡等原因,导致VANETs分割现象严重,以至于车载网不能正常通信,因此许多研究提出通过引入无线接入点(AP)来增强车载网通信的可能性.本文就是针对城市环境的VANETs的AP布局问题的研究,在基于车流量和粒子群算法的基础上提出的解决方案,并给出了相应的仿真,仿真结果表明该算法能在保证覆盖率的情况下实现AP的优化布局,同时在寻优过程中具有较快的收敛速度和较好的收敛性.  相似文献   

14.

Recent developments in dynamic mobile ad-hoc network enhance the network speed and reliability. The nodes in the dynamic ad-hoc network are moving in nature. Due to the increased subscribers in this network, the network traffic has increased to manifold which in turn creating the challenge of maintaining the energy level. In path optimization process in mobile ad-hoc network consumes more energy and the draining of the energy is dependent on network reliability and connectivity. Further, the network also suffers by harmful attacks such as denial of service attack, black hole attack and warm hole attack. The primary focus of this paper is to prevent these attacks with the help of dynamic mobile ad-hoc network on demand protocol and hybrid meta-heuristics methodologies, and also to reduce the energy drain rate. This is achieved by estimating the velocity and fitness value of the nodes. Finally, the empirical simulation results of hybrid particle swarm optimization with bat algorithm (PSO–BAT) shows that the energy drain rate level is reduced 90% as 1 mJ/s than ad-hoc on demand vector. The end-to-end delay minimized to 50% than existing Ad hoc on-demand distance vector routing. The performance metrics routing overhead and execution time has been reduced and throughput is gradually increased in PSO–BAT optimization in dynamic mobile ad hoc network scenario.

  相似文献   

15.
Vehicular ad hoc network (VANET) has earned tremendous attraction in the recent period due to its usage in a wireless intelligent transportation system. VANET is a unique form of mobile ad hoc network (MANET). Routing issues such as high mobility of nodes, frequent path breaks, the blind broadcasting of messages, and bandwidth constraints in VANET increase communication cost, frequent path failure, and overhead and decrease efficiency in routing, and shortest path in routing provides solutions to overcome all these problems. Finding the shortest path between source and destination in the VANET road scenario is a challenging task. Long path increases network overhead, communication cost, and frequent path failure and decreases routing efficiency. To increase efficiency in routing a novel, improved distance‐based ant colony optimization routing (IDBACOR) is proposed. The proposed IDBACOR determines intervehicular distance, and it is triggered by modified ant colony optimization (modified ACO). The modified ACO method is a metaheuristic approach, motivated by the natural behavior of ants. The simulation result indicates that the overall performance of our proposed scheme is better than ant colony optimization (ACO), opposition‐based ant colony optimization (OACO), and greedy routing with ant colony optimization (GRACO) in terms of throughput, average communication cost, average propagation delay, average routing overhead, and average packet delivery ratio.  相似文献   

16.
车载自组网络(Vehicular Ad Hoc Networks,VANET)是指道路上由车辆搭载的无线通信装置构成的一种特殊的多跳无线移动自组织网络。VANET在实现多种智能交通方面应用的同时,还能满足用户在乘车时的娱乐等舒适性的需求,近些年来已成为无线自组网络研究的新热点。总结了近些年来出现的主要VANET路由协议的核心路由机制及其优缺点,并分析了各种技术对路由协议性能的影响。其后给出了一种基于速度信息的VANET路由协议改进方法,并通过实验验证了将改进方法与GPSR协议结合可以提高路由路径的稳定性,减少了端到端的平均时延,降低了VANET网络中拓扑的高动态性对路由协议性能的影响。  相似文献   

17.
Routing in Vehicular Ad hoc Network (VANET) is a challenging task due to high mobility of vehicles. In this paper, a RVCloud routing protocol is proposed for VANET to send the data efficiently to the destination vehicle using cloud computing technology. In this protocol, vehicle beacon information is send to the cloud storage through the Road Side Unit (RSU). As vehicles have less storage and computing facility, the information of all the vehicles moving in the city is maintained by the cloud. Source vehicle sends the data to the destination by sending the data to the nearby RSU. After receiving the data, RSU sends a request to the cloud for an optimal RSU information, that takes minimum packet forwarding delay to send the data to the destination. Cloud provides location service by providing destination location and optimal RSU information. Then RSU sends the data to the optimal RSU using internet. By using the internet facility, packet forwarding delay and link disruption problem are reduced. Simulation results show that, RVCloud performs better than VehiCloud, P-GEDIR, GyTAR, A-STAR, and GSR routing protocols.  相似文献   

18.

The wireless sensor network based IoT applications mainly suffers from end to end delay, loss of packets during transmission, reduced lifetime of sensor nodes due to loss of energy. To address these challenges, we need to design an efficient routing protocol that not only improves the network performance but also enhances the Quality of Service. In this paper, we design an energy-efficient routing protocol for wireless sensor network based IoT application having unfairness in the network with high traffic load. The proposed protocol considers three-factor to select the optimal path, i.e., lifetime, reliability, and the traffic intensity at the next-hop node. Rigorous simulation has been performed using NS-2. Also, the performance of the proposed protocol is compared with other contemporary protocols. The results show that the proposed protocol performs better concerning energy saving, packet delivery ratio, end-to-end delay, and network lifetime compared to other protocols.

  相似文献   

19.
The technical growth in the field of the wireless sensor networks (WSNs) has resulted in the process of collecting and forwarding the massive data between the nodes, which was a major challenge to the WSNs as it is associated with greater energy loss and delay. This resulted in the establishment of a routing protocol for the optimal selection of the multipath to progress the routing in WSNs. This paper proposes an energy‐efficient routing in WSNs using the hybrid optimization algorithm, cat–salp swarm algorithm (C‐SSA), which chooses the optimal hops in progressing the routing. Initially, the cluster heads (CHs) are selected using the low‐energy adaptive clustering hierarchy (LEACH) protocol that minimizes the traffic in the network. The CHs are engaged in the multihop routing, and the selection of the optimal paths is based on the proposed hybrid optimization, which chooses the optimal hops based on the energy constraints, such as energy, delay, intercluster distance, intracluster distance, link lifetime, delay, and distance. The simulation results prove that the proposed routing protocol acquired minimal delay of 0.3165 with 50 nodes and two hops, maximal energy of 0.1521 with 50 nodes and three hops, maximal number of the alive nodes as 39 with 100 nodes and two hops, and average throughput of 0.9379 with 100 nodes and three hops.  相似文献   

20.
In vehicular ad hoc networks, vehicles may use a routing protocol to inform emergent events, for example, car accidents or traffic jams. Hence, many of the researchers are focused on minimizing the end‐to‐end delay of the routing protocol. However, some applications, for example, email or ftp, are not time critical, and radio spectrum is a limited resource. Hence, delay‐bounded routing protocol, whose goal is to deliver messages to the destination within user‐defined delay and minimize the usage of radio, has become an important issue. The delay‐bounded routing protocols deliver message to the destination by the hybrid of data muling (carried by the vehicle) and forwarding (transmitted through radio). When the available time is enough, the message will be delivered by muling; otherwise, it will be delivered by forwarding. However, in an urban area, there are many traffic lights, which may greatly affect the performance of the delay‐bounded routing protocols. Existing works do not consider the effect of traffic lights, and hence, it may adopt an improper delivery strategy and thus wastes much available time. To improve previous works, we propose a novel delay‐bounded routing protocol, which has considered the effect of traffic lights. Whenever a vehicle passes an intersection, it will gather the information of the traffic light and traffic load of the next road section, and thus, it can make a more accurate prediction and adopt a more proper strategy to deliver message. Simulation results show that the proposed protocol can make a better usage of the available time and uses less radio resource to deliver the message in time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号