首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a new physical‐layer network coding (PNC) scheme, named combined orthogonal PNC (COPNC), for fading two‐way relay channels. The scheme is based on orthogonal PNC (OPNC). In the scheme, the two source nodes employ orthogonal carriers, and the relay node makes an orthogonal combining of the two information bits rather than exclusive or (XOR), which is employed in most PNC schemes. The paper also analyzes the bit error rate (BER) performance of PNC, OPNC, and COPNC for Rayleigh fading model. Simulation results for Rayleigh and Nakagami‐m fading channels show that COPNC can provide outstanding BER performance compared with PNC and OPNC, especially when the uplink channel conditions are asymmetric. The results in Nakagami‐m channels also imply that COPNC will provide higher BER gain with more severe fading depth. Potential works about COPNC are also presented in this paper. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we propose an Nth best relay selection (Nth‐RS) scheme for analog network coding in two‐way relay systems. In traditional two‐way single‐relay selection schemes, only the best one is selected to forward network‐coded signals. However, in practical applications, the best relay may be unavailable because of the scheduling or overload constraints. In this case, we investigate a more general scheme, where the Nth best but available relay is selected. To evaluate the transmission of reliability, the expression of outage probability in exponential–integral form and its asymptotic expression in closed form are presented. Moreover, the upper bound and lower bound of outage probability are also derived. The analysis reveals that the diversity order of Nth‐RS equals to (M ? N + 1), where M is the number of relay nodes, and the results are verified by simulations. In order to improve system performance, transmit power between sources and relay is optimally allocated to minimize the upper bound of outage probability under total power constraint. Simulation results show that Nth‐RS scheme with proposed power allocation can achieve substantial improvement over equal power allocation scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper focuses on noncoherent detection scheme for multiple‐input multiple‐output two‐way relay channel network with two two‐antennas source nodes and one single‐antenna relay node. An orthogonal differential space–time network coding (ODSTNC) scheme based on relay detection and forward protocol is proposed. The proposed scheme combines space–time coding with network coding, and the differential modulation and detection are used in both multiple access stage and broadcast stage. The multiple‐symbol differential detection is employed at the relay. The maximum likelihood decision and its low‐complexity sphere decoding decision are given. The upper and lower bounds on the average symbol error probability for this system under differential binary phase shift keying (DBPSK) are derived, and a diversity order of 2 is confirmed to be achieved. The simulation results show that the ODSTNC scheme has good performance, and it is available for the applications of far distance signal transmission between two terminals where channel state information is unknown. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a high data rate bidirectional relay network is proposed by combining the merits of spatial modulation (SM) and physical layer network coding. All nodes in the network are equipped with multiple antennas. Spatial modulation technique is used to reduce hardware complexity and interchannel interference by activating only one antenna at any time during transmission. In the proposed bidirectional relay network, transmit antennas are selected at the source nodes and relay node on the basis of the order statistics of channel power. It increases received signal power and provides a significant improvement in the outage performance. Also, the data rate of the proposed network is improved by physical layer network coding at the relay node. A closed form analytical expression for the outage probability of the network over Nakagami‐m fading channel is derived and validated by Monte Carlo simulations. In addition, asymptotic analysis is investigated at high signal‐to‐noise ratio region.The outage performance of the proposed network is compared with SM and physical layer network coding bidirectional relay network without transmit antenna selection and point‐to‐point SM. With approximate SNR≈1 dB difference between the two networks, the same data rate is achieved.  相似文献   

5.
Systems are always designed and optimized based on full traffic load in the current literatures.However,practical systems are seldom operating at full load,even at peak traffic hours.Instead of maximizing system rate to achieve the full load,an optimal energy-efficient scheme to minimize the transmit power with required rates is investigated in this article.The considered scenario is a two-way relay channel using amplify-and-forward protocol of physical layer network coding,where two end nodes exchange mess...  相似文献   

6.
This paper proposes a cooperative quadrature physical layer network coding (CQPNC) scheme for a dual‐hop cooperative relay network, which consists of two source nodes, one relay node and one destination node. All nodes in the network have one antenna, and the two source nodes transmit their signals modulated with quadrature carriers. In this paper, a cooperative quadrature physical layer network coded decode‐and‐forward (DF) relay protocol (CQPNC‐DF) is proposed to transmit the composite information from the two source nodes via the relay node to the destination node simultaneously to reduce the number of time slots required for a transmission. The proposed CQPNC‐DF relay protocol is compared with time‐division multiple‐access amplify‐and‐forward (TDMA‐AF), TDMA‐DF, cooperative network coded DF (CNC‐DF) and cooperative analog network coded AF (CANC‐AF) relay protocols to demonstrate its effectiveness in terms of bit error rate (BER) and system throughput under different propagation conditions. The simulation results reveal that the proposed CQPNC‐DF relay protocol can significantly improve the network performance. Compared with two TDMA schemes and CNC‐DF, the proposal can provide up to 100% and 50% throughput gains, respectively. Moreover, no matter what the scene, the proposed scheme always has the lowest BER in the low SNR region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we explore the advantages of network coding and space–time coding in improving the performance of two‐way‐relayed communications where two terminals absent of direct links exchange information through a single relay in between. Network coding allows embracing the interference from other terminals thereby turning it into a capacity boost. The application of space–time codes yields higher capacity by exploiting the spatial diversity. The joint performance of both techniques is studied in this paper. Specifically, we consider the class of decode‐and‐forward (DF) relaying strategy, evaluated in terms of symbol error rate using BPSK and QPSK modulations by both theoretical analysis and simulation. Based on our results, DF outperforms the amplify‐and‐decode and partial‐decode‐and‐forward protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper considers channel quality indicator (CQI) reporting for data exchange in a two‐way multi‐relay network. We first propose an efficient CQI reporting scheme based on network coding, where two terminals are allowed to simultaneously estimate the CQI of the distant terminal‐relay link without suffering from additional overhead. In addition, the transmission time for CQI feedback at the relays is reduced by half while the increase in complexity and the loss of performance are negligible. This results in a system throughput improvement of 16.7% with our proposed CQI reporting. Upper and lower bounds of the mean square error (MSE) of the estimated CQI are derived to study performance behaviour of our proposed scheme. It is found that the MSE of the estimated CQI increases proportionally with the square of the cardinality of CQI level sets although an increased number of CQI levels would eventually lead to a higher data rate transmission. On the basis of the derived bounds, a low‐complexity relay selection (RS) scheme is then proposed. Simulation results show that, in comparison with optimal methods, our suboptimal bound‐based RS scheme achieves satisfactory performance while reducing the complexity at least three times in case of large number of relays. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we consider switch‐and‐stay combining (SSC) in two‐way relay systems with two amplify‐and‐forward relays, one of which is activated to assist the information exchange between the two sources. The system operates in either analog network coding (ANC) protocol where the communication is only achieved with the help of the active relay or time‐division broadcast (TDBC) protocol where the direct link between two sources can be utilized to exploit more diversity gain. In both cases, we study the outage probability and bit error rate (BER) for Rayleigh fading channels. In particular, we derive closed‐form lower bounds for the outage probability and the average BER, which remain tight for different fading conditions. We also present asymptotic analysis for both the outage probability and the average BER at high signal‐to‐noise ratio. It is shown that SSC can achieve the full diversity order in two‐way relay systems for both ANC and TDBC protocols with proper switching thresholds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This paper introduces limited feedback technique into physical‐layer network coding (PLNC) scheme, which is the most spectrally efficient protocol in two‐way relay channels, consisted of one relay and two end nodes (sources). Decode‐and‐forward (DF) and partial‐decode‐and‐forward (PDF) strategies are considered for PLNC, and all nodes are assumed to have two antennas to allow transmission by Alamouti's orthogonal space–time block code to provide diversity. In DF, by limited feedback, one of the sources is informed about instantaneous channel state information (CSI) to increase the bit error rate (BER) performance at relay. The closed‐form upper and lower bounds on the bit error probability are derived for binary phase‐shift keying (BPSK) and quadrature PSK (QPSK) modulations and approved via computer simulations. In PDF strategy, each source has to know CSI between relay and the other source for decoding, which causes extra protocol complexity. Moreover, for the system in which all nodes have two antennas, classical PDF strategy does not satisfy orthogonality at the end nodes. Therefore, in this paper, a modified‐PDF (MPDF) strategy with limited feedback is proposed. In MPDF, for decoding at the end nodes, differential phase information between channel fading coefficients having maximum amplitudes is fed back to the sources by relay. This approach enables single‐symbol decoding, besides full diversity, and sources do not need to know CSI between relay and the other source. It is shown via computer simulations that MPDF strategy provides significantly better BER performance than the classical PDF for BPSK and QPSK modulations.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the decode‐and‐forward two‐way relaying channel without direct link and proposes a protocol based on the physical‐layer network coding (PNC) protocol. The proposed protocol (termed ORT) introduces one retransmission into PNC, aiming at enhancing its outage performance. To manifest the merits of ORT, we compare it with PNC and the time‐division broadcast (TDBC) protocol, in terms of outage performance, expected rate, and diversity‐multiplexing tradeoff (DMT). Firstly, we derive the outage probability of the three protocols and then the expected rate. Secondly, asymptotic analysis is conducted to shed light on the diversity and coding gains. Finally, the DMT is obtained for the three protocols. The numerical results reveal the following: (i) that ORT performs better than PNC in both outage and expected rate performance when the nodes transmit with different powers. However, it has the same DMT performance with PNC; (ii) that ORT possesses improved DMT performance over TDBC whereas its expected rate is only better than the latter at medium to high signal‐to‐noise ratio. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
We propose two schemes for asynchronous multi‐relay two‐way relay (MR‐TWR) systems in which neither the users nor the relays know the channel state information. In an MR‐TWR system, two users exchange their messages with the help of NR relays. Most of the existing works on MR‐TWR systems based on differential modulation assume perfect symbol‐level synchronization between all communicating nodes. However, this assumption is not valid in many practical systems, which makes the design of differentially modulated schemes more challenging. Therefore, we design differential modulation schemes that can tolerate timing misalignment under frequency‐selective fading. We investigate the performance of the proposed schemes in terms of either probability of bit error or pairwise error probability. Through numerical examples, we show that the proposed schemes outperform existing competing solutions in the literature, especially for high signal‐to‐noise ratio values. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
It is well known that symbol‐level regenerative relay protocols suffer the error propagation problem because receiver decodes blindly and overlooks the probability of relay forwarding wrong bits. In a two‐way relay networks, the problem still exists in both network coding (decode‐and‐forward) and physical network coding (denoise‐and‐forward) protocols. For today's widely adopted wide band Orthogonal frequency‐division multiplexing (OFDM) systems, error propagation will dramatically restrict the system's end‐to‐end performance especially when frequency selective fading exists. In this paper, we propose a bit error rate (BER) modified decoding algorithm for these OFDM‐based two‐way symbol‐level regenerative relay strategies. By confining the confidence level of demodulated soft information according to the likelihood of relay having made an error on each bit, this proposed algorithm significantly boosts the end‐to‐end BER performance of the system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This paper studies optimal resource allocation for multiple network‐coded two‐way relay in orthogonal frequency division multiplexing systems. All the two‐way relay nodes adopt amplify‐and‐forward and operate with analog network coding protocol. A joint optimization problem considering power allocation, relay selection, and subcarrier pairing to maximize the sum capacity under individual power constraints at each transmitter or total network power constraint is first formulated. By applying dual method, we provide a unified optimization framework to solve this problem. With this framework, we further propose three low‐complexity suboptimal algorithms. The complexity of the proposed optimal resource allocation (ORA) algorithm and three suboptimal algorithms are analyzed, and it is shown that the complexity of ORA is only a polynomial function of the number of subcarriers and relay nodes under both individual and total power constraints. Simulation results demonstrate that the proposed ORA scheme yields substantial performance improvement over a baseline scheme, and suboptimal algorithms can achieve a trade‐off between performance and complexity. The results also indicate that with the same total network transmit power, the performance of ORA under total power constraint can outperform that under individual power constraints. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we consider a two‐way relay network consisted of two sources and multiple relays in the presence of an eavesdropper, where the cooperative beamforming strategy is applied to exploit the cooperative diversity to support the secure communication as illustrated in Figure 1. Naturally, we are interested in the beamforming strategy and power allocation to maximize the achievable sum secrecy rate. However, the corresponding problem is equivalent to solve a product of three correlated generalized Rayleigh quotients problem and difficult to solve in general. Because of the openness of wireless medium, the information rate leakage to the eavesdropper cannot be canceled perfectly. To some extent, ‘almost perfect secrecy’, where the rate leakage to the eavesdropper is limited, is more interesting from the practical point of view. In this case, we concern ourself mainly the achievable rate region for general case where the rate at the eavesdropper is regarded as the measurement of secrecy level. Two beamforming approaches, optimal beamforming and null space beamforming, are applied to investigate the achievable rate region with total power constraint and the rate constraint at the eavesdropper, which can be obtained by solving a sequence of the weighted sum inverse‐signal‐to‐noise‐ratio minimization (WSISM) problem. Because of the non‐convexity of WSISM problem, an alternating iteration algorithm is proposed to optimize the relay beamforming vector and two sources' transmit power, where two subproblems need to be solved in each iteration. Meanwhile, we provide the convergence analysis of proposed algorithm. Through the numerical simulations, we verify the effectiveness of proposed algorithm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we investigate the performance of two‐way relay assisted free space optical systems over atmospheric turbulence‐induced fading channels affected by molecular absorbtion‐induced path losses. A three node, dual‐hop, bi‐directional, half‐duplex relaying system with independent but not necessarily identically distributed channels is considered. Spectral efficiency is achieved by employing network coding to complete data transmission in two‐time phases. Closed form expression for system outage performance is derived considering decode‐and‐forward protocol. Additionally, the error performance in terms of average symbol error rate for M‐ary phase shift keying is evaluated. Further, the net achievable capacity of the system is also calculated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Two‐way exclusive OR (XOR) relay can enable hidden nodes to exchange data with low delays and high data rate, while keeping signal processing simple. In this paper, we analyse practical two‐way XOR relaying systems, where finite relay buffer, non‐negligible signalling overhead, and lossy wireless channels are all captured. A two‐layer model is developed to characterise such practical two‐way relay systems, which is then reformulated into a Markov process after we project and combine inter‐layer state transitions of the two‐layer model. Using Markov techniques, we evaluate the steady state probabilities of the Markov process and, in turn, the key performance measures of two‐way XOR relaying, such as throughput, delay, and packet loss. The accuracy of our model is validated by simulations. Our model can also be used as an online tool to configure the buffer resources, adapting to wireless channel conditions and signalling requirements. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we investigate the carrier sensing range (CSR) of a general 802.11 network with physical‐layer network coding (PNC). We aim to derive a sufficient CSR that can prevent the hidden‐node collisions in a general 802.11 PNC network. The analysis includes two steps. First, we analyze the six link‐to‐link interference cases in an 802.11 PNC network to show that the mutual interference will be most severe when each node in the network initiates a two‐hop end node link. Second, we consider the worst interference case that all concurrently transmitting links in the network are two‐hop end node links and placed in the densest manner and develop a closed‐form expression of a sufficient CSR that prevents the hidden‐node collisions in a PNC network. From the analysis results, we find that to prevent the hidden‐node collisions, the CSR in PNC network should be bigger than the one in traditional non‐network‐coding network. Furthermore, we carry out extensive simulations to find out the throughput gain of PNC scheme in a general wireless network when considering the impact of CSR. Simulation results show that compared with the non‐network‐coding scheme, PNC scheme has throughput gain when a large proportion (i.e., 90%) of links in the network are two‐hop links and the link density has little effect on the throughput gain of PNC scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
We consider a multi‐source two‐way relay network, in which one source communicates with N other sources (n = 1,2,…,N) with the help of a single amplify‐and‐forward relay. We propose two opportunistic source scheduling schemes in such a network. According to the proposed schemes, in each transmission interval, only a single out of the N sources is selected, and this selected node acts as either transmitter or receiver depending on the channel conditions. For both schemes, tight closed‐form lower bounds of outage probability and bit error rate (BER) are derived. Asymptotic outage probability and BER that are valid for high signal‐to‐noise ratio regime are also analyzed, which can provide important insights on the impact of system parameters. The analytical results show that the full diversity order N + 1 can be achieved by both proposed schemes. Simulation results are also presented to corroborate the analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we derive the capacity of the deterministic relay networks with relay messages. We consider a network that consists of five nodes, four of which can only communicate via the fifth one. However, the fifth node is not merely a relay as it may exchange private messages with the other network nodes. First, we develop an upper bound on the capacity region based on the notion of a single‐sided genie. In the course of the achievability proof, we also derive the deterministic capacity of a four‐user relay network (without private messages at the relay). The capacity achieving schemes use a combination of two network coding techniques: the simple ordering scheme and detour scheme. In the simple ordering scheme, we order the transmitted bits at each user such that the bi‐directional messages will be received at the same channel level at the relay, while the basic idea behind the detour scheme is that some parts of the message follow an indirect paths to their respective destinations. This paper, therefore, serves to show that user cooperation and network coding can enhance throughput, even when the users are not directly connected to each other. Finally, we make a conjecture about the capacity region of the general K‐node relay network with relay messages. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号