首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fractional circuits have attracted extensive attention of scholars and researchers for their superior performance and potential applications. Fractional circuits constitute a new challenge for the analysis and synthesis methods of traditional circuits theory. Passivity is the fundamental property of traditional circuits (integer order electric circuits). As is known to all, passivity is equivalent to positive realness in traditional linear circuits. However, this equivalence is broken down by introducing fractional elements into electrical networks in s‐domain. To address this issue, on the basis of s‐W transformation, we study the passive criteria of fractional circuits with rational order elements in this paper. Definitions of positive‐real (matrix) function in W‐domain are given, and the equivalence conditions of positive realness are derived. In addition, a conclusion is proposed in which the immittance (matrix) function of passive fractional circuits with rational order elements is positive real in W‐domain. The applications of passive criteria in circuit synthesis are shown.  相似文献   

2.
This article mainly examine a class of robust synchronization, global stability criterion, and boundedness analysis for delayed fractional‐order competitive type‐neural networks with impulsive effects and different time scales. Firstly, by endowing the robust analysis skills and a new class of Lyapunov‐Krasovskii functional approach, the error dynamical system is furnished to be a robust adaptive synchronization in the voice of linear matrix inequality (LMI) technique. Secondly, by ignoring the uncertain parameter terms, the existence of equilibrium points are established by means of topological degree properties, and the solution representation of the considered network model are provided. Thirdly, a novel global asymptotic stability condition is proposed in the voice of LMIs, which is less conservative. Finally, our analytical results are justified with two numerical examples with simulations.  相似文献   

3.
This work studies the issue of synchronization control for a type of fractional‐order complex networks, in which the adaptive coupling matrix is considered under the directed topology structure. A pinning control strategy, with the free selection of pinning nodes, is adopted for the synchronization goal. Then, by absorbing the information of eigenvectors and adaptive laws for the coupling matrix, a new Lyapunov function is constructed, by which, and with the assistance of Gronwall inequality and network features, the sufficient condition for Mittag‐Leffler synchronization of the fractional‐order network is established. Accordingly, an easy verifiable algebraic criterion is further derived by means of some matrix inequalities. Besides, we also discuss the effect of outer coupling strength on the achievement of network synchronization. Finally, a numerical experiment is performed to show the evidence of the correctness and effectiveness of the proposed results.  相似文献   

4.
Adaptive synchronization of a class of fractional‐order complex networks is investigated in this paper. On the basis of the fractional‐order system stability theory, adaptive synchronization criteria of fractional‐order complex networks with 0 < q < 1 is achieved. Furthermore, pinning control method is then suggested to control the networks, and adaptive strategy is employed to tune the control gains and coupling strength. Because the nodes with high degree may not be the center of the networks, a new attempt to choose the pinned nodes on the basis of the closeness centrality scheme is proposed. Finally, numerical simulations are given to verify the effectiveness of the proposed approach based on the closeness centrality scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
This paper considers the design of reduced‐order state observers for fractional‐order time‐delay systems with Lipschitz nonlinearities and unknown inputs. By using the Razumikhin stability theorem and a recent result on the Caputo fractional derivative of a quadratic function, a sufficient condition for the asymptotic stability of the observer error dynamic system is presented. The stability condition is obtained in terms of linear matrix inequalities, which can be effectively solved by using existing convex algorithms. Numerical examples and simulation results are given to illustrate the effectiveness of the proposed design approach.  相似文献   

6.
We proposed neural network structures related to multilayer feed‐forward networks for performing blind source separation (BSS) based on fractional lower‐order statistics. As alpha stable distribution process has no its second‐ or higher‐order statistics, we modified conventional BSS algorithms so that their capabilities are greatly improved under both Gaussian and lower‐order alpha stable distribution noise environments. We analysed the performances of the new algorithm, including the stability and convergence performance. The analysis is based on the assumption that the additive noise can be modelled as alpha stable process. The simulation experiments and analysis show that the proposed class of networks and algorithms is more robust than second‐order‐statistics‐based algorithm. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a composite learning fuzzy control to synchronize two different uncertain incommensurate fractional‐order time‐varying delayed chaotic systems with unknown external disturbances and mismatched parametric uncertainties via the Takagi‐Sugeno fuzzy method. An adaptive controller together with fractional‐order composite learning laws is designed based on both a parallel distributed compensation technology and a fractional Lyapunov criterion. The boundedness of all variables in the closed‐loop system and the Mittag‐Leffler stability of tracking error can be guaranteed. T‐S fuzzy systems are provided to tackle unknown nonlinear functions. The distinctive features of the proposed approach consist in the following: (1) a supervisory control law is designed to compensate the lumped disturbances; (2) both the prediction error and the tracking error are used to estimate the unknown fuzzy system parameters; (3) parameter convergence can be ensured by an interval excitation condition. Finally, the feasibility of the proposed control strategy is demonstrated throughout an illustrative example.  相似文献   

8.
Four practical sinusoidal oscillators are studied in the general form where fractional‐order energy storage elements are considered. A fractional‐order element is one whose complex impedance is given by Z = a(jω)±α, where a is a constant and α is not necessarily an integer. As a result, these oscillators are described by sets of fractional‐order differential equations. The integer‐order oscillation condition and oscillation frequency formulae are verified as special cases. Numerical and PSpice simulation results are given. Experimental results are also reported for a selected Wien‐bridge oscillator. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Novel topologies of fractional‐order generalized filters are introduced in this paper. These offer the following benefits: (1) realization of lowpass, highpass, bandpass, allpass, or bandstop filter functions by the same topology; (2) resistorless realizations; (3) electronic adjustment of their frequency characteristics as well as their order; and (4) employment of only grounded capacitors. All the above have been achieved using Operational Transconductance Amplifiers as active elements and appropriate multi‐feedback topologies. The behavior of the proposed designs is verified through simulation results using the Cadence IC design suite and the Design Kit provided by the Austrian Micro Systems 0.35‐µm complementary metal–oxide–semiconductor process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The present work reports the realization of an analog fractional‐order phase‐locked loop (FPLL) using a fractional capacitor. The expressions for bandwidth, capture range, and lock range of the FPLL have been derived analytically and then compared with the experimental observations using LM565 IC. It has been observed that bandwidth and capture range can be extended by using FPLL. It has also been found that FPLL can provide faster response and lower phase error at the time of switching compared to its integer‐order counterpart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a novel parameter tuning law that forces the emergence of a sliding motion in the behavior of a multi‐input multi‐output nonlinear dynamic system. Adaptive linear elements are used as controllers. Standard approach to parameter adjustment employs integer order derivative or integration operators. In this paper, the use of fractional differentiation or integration operators for the performance improvement of adaptive sliding mode control systems is presented. Hitting in finite time is proved and the associated conditions with numerical justifications are given. The proposed technique has been assessed through a set of simulations considering the dynamic model of a two degrees of freedom direct drive robot. It is seen that the control system with the proposed adaptation scheme provides (i) better tracking performance, (ii) suppression of undesired drifts in parameter evolution, (iii) a very high degree of robustness and improved insensitivity to disturbances and (iv) removal of the controller initialization problem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
This paper addresses the problem of interval observer design for linear functions of state vectors of linear fractional‐order systems, which are subjected to time delays in the measured output as well as the control input. By using the information of both the delayed output and input, we design two linear functional state observers to compute two estimates, an upper one and a lower one, which bound the unmeasured linear functions of state vectors. As a particular case with output delay only, we design a linear functional state observer to estimate (asymptotically) the unmeasured linear functions of state vectors. Existence conditions of such observers are provided, and some of them are translated into a linear programming problem, in which the observers' matrices can be effectively computed. Constructive design algorithms are introduced. Numerical examples are provided to illustrate the design procedure, practicality, and effectiveness of the proposed design method.  相似文献   

13.
This paper deals with the extended design of Mittag‐Leffler state estimator and adaptive synchronization for fractional‐order bidirectional associative memory neural networks with time delays. By the aid of Lyapunov direct approach and Razumikhin‐type method, a suitable fractional‐order Lyapunov functional is constructed and a new set of novel sufficient condition are derived to estimate the neuron states via available output measurements such that the ensuring estimator error system is globally Mittag‐Leffler stable. Then, the adaptive feedback control rule is designed, under which the considered FBNNs can achieve Mittag‐Leffler adaptive synchronization by means of some fractional‐order inequality techniques. Moreover, the adaptive feedback control may be utilized even when there is no ideal information from the system parameters. Finally, two numerical simulations are given to reveal the effectiveness of the theoretical consequences.  相似文献   

14.
目前单相逆变器的建模分析以整数阶理论为基础,未考虑电感、电容的分数阶特性,与实际系统有一定误差。针对此问题,本文首先分析了分数阶电感和分数阶电容的特性,在此基础上建立了单相全桥电压型逆变器的分数阶模型,并对比分析了整数阶模型和分数阶模型的差异。结果表明:整数阶模型与实际系统的偏差为9.38%,分数阶模型与实际系统的偏差可控制在1.56%,分数阶模型能够更准确的描述实际系统特性。  相似文献   

15.
The last two decades have seen great progress about the generation and circuit realization of multi‐wing chaotic attractor. In this paper, several multi‐scroll chaotic attractors are generated from a five‐term system by adding a piecewise linear function. Moreover, some basic properties in terms of symmetry and dissipation, equilibrium points, eigenvalues of the Jacobian matrices, Lyapunov exponent spectrum, bifurcation diagram, and Poincaré map are studied. In particular, an analog circuit is designed to implement the proposed multi‐scroll attractors, which are different from the traditional attractors. Furthermore, an integrated circuit diagram is designed to realize the fractional‐order multi‐scroll attractors. Finally, the performed experimental results confirm the theoretical analysis, and our work lends itself to many potential applications in engineering. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Novel configurations of fractional‐order filter topologies, realized through the employment of the concept of companding filtering, are introduced in this paper. As a first step, the design procedure is presented in a systematic algorithmic way, while in the next step, the basic building blocks of sinh‐domain and log‐domain integrators are presented. Because of the employment of metal–oxide–semiconductor (MOS) transistors operated in the subthreshold region, the derived filter structures offer the capability for operation in an ultra‐low‐voltage environment. In addition, because of the offered resistorless realizations, the proposed topologies are reconfigurable, in the sense that the order of the filter could be chosen through appropriate bias current sources. The performance of the derived fractional‐order filters has been evaluated through simulation and comparison results using the Analog Design Environment of the Cadence software and MOS transistor parameters provided by the Taiwan Semiconductor Manufacturing Company (TSMC) 180‐nm complementary MOS (CMOS) process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
This paper deals with the problem of identification of the network parameters and the desired equilibrium in applications of excitation control for synchronous generators. Our main contribution is the construction of a new non‐linear identifier that provides asymptotically consistent estimates (with guaranteed transient bounds) of the line impedance and the equilibrium for the classical three‐dimensional flux‐decay model of a single generator connected to an infinite bus. This model is non‐linear, and non‐linearly parameterized, and the equilibria depend also non‐linearly on the unknown parameters. The proposed estimator can be used, adopting a certainty equivalent approach, to make adaptive any power system stabilizer that relies on the knowledge of these parameters. The behaviour of the scheme is illustrated in two simulated case studies with the interconnection and damping assignment passivity‐based controller recently proposed by the authors. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a fractional‐order Dadras‐Momeni chaotic system in a class of three‐dimensional autonomous differential equations has been considered. Later, a design technique of adaptive sliding mode disturbance‐observer for synchronization of a fractional‐order Dadras‐Momeni chaotic system with time‐varying disturbances is presented. Applying the Lyapunov stability theory, the suggested control technique fulfils that the states of the fractional‐order master and slave chaotic systems are synchronized hastily. While the upper bounds of disturbances are unknown, an adaptive regulation scheme is advised to estimate them. The recommended disturbance‐observer realizes the convergence of the disturbance approximation error to the origin. Finally, simulation results are presented in one example to demonstrate the efficiency of the offered scheme on the fractional‐order Dadras‐Momeni chaotic system in the existence of external disturbances.  相似文献   

19.
Using fractional calculus, we analyze a classical switched‐capacitor integrator when a fractional‐order capacitor is employed in the feed‐forward path. We show that using of a fractional‐order capacitor, significantly large time constants can be realized with capacitances in the feedback path much smaller in value when compared with a conventional switched‐capacitor integrator. Simulations and experimental results using a commercial super‐capacitor with fractional‐order characteristics confirmed via impedance spectroscopy are provided. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper studies the problem of the almost surely asymptotic synchronization for a class of stochastic neural networks of neutral type with both Markovian jumping parameters and mixed time delays. Based on the stochastic analysis theory, LaSalle‐type invariance principle, and delayed state‐feedback control technique, some novel delay‐dependent sufficient criteria to guarantee the almost surely asymptotic synchronization are given. These criteria are expressed as the linear matrix inequalities, which can be easily checked by MATLAB LMI Control Toolbox. Finally, four numerical examples and their simulations are provided to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号