首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
将认知无线电中的动态频谱分配技术应用在无线传感网中,针对工作在ISM(industrial,scientific and medical)频段的无线传感网面临的频谱资源紧缺问题,提出一种基于改进自适应遗传算法的动态频谱分配方案.该算法以图论着色模型为基础,以最大带宽收益和最小切换频率为目标函数,在交叉和变异过程中采用自适应交叉概率和变异概率代替固定的交叉概率和变异概率.仿真结果表明,与传统遗传算法和颜色敏感图论着色算法相比,该算法可以实现提高频谱利用率、降低能量消耗的预期目标.  相似文献   

3.
针对非理想感知情况下感知时间与频谱分配联合优化问题,同时考虑漏检与主用户重新占用频谱两种场景所造成的主次用户碰撞,并通过量化主用户对认知用户的干扰,给出有无主用户存在时认知系统可获得的吞吐量。在总传输功率约束以及对主用户的最大干扰功率约束两个限制条件下,以最大化系统平均吞吐量为优化目标,给出感知时间与频谱分配联合优化算法。算法首先通过折半法搜索最优感知时间,在既定的感知时间下,将子信道分配给能获得最大平均吞吐量的认知用户,在此基础上,利用凸优化相关理论求得最优功率分配。仿真结果表明,本文所提算法相比于传统频谱分配算法系统平均吞吐量性能提升了10%左右。  相似文献   

4.
Various cognitive network technologies are developed rapidly. In the article, the power and spectrum allocation in multi-hop cognitive radio network (CRN) with linear topology is investigated. The overall goal is to minimize outage probability and promote spectrum utility, including total reward and fairness, while meeting the limits of total transmit power and interference threshold to primary user simultaneously. The problem is solved with convex optimization and artificial bee colony (ABC) algorithm jointly. Simulation shows that the proposed scheme not only minimizes outage probability, but also realizes a better use of spectrum.  相似文献   

5.
Cognitive radio makes it possible for an unlicensed user to access a spectrum unoccupied by licensed users. In cognitive radio networks, extra constraints on interference temperature need to be introduced into radio resource allocation. In this paper, the uplink radio resource allocation is investigated for OFDMA‐based cognitive radio networks. In consideration of the characteristics of cognitive radio and OFDMA, an improved water‐filling power allocation scheme is proposed under the interference temperature constraints for optimal performance. Based on the improved water‐filling power allocation, a simple subcarrier allocation algorithm for uplink is proposed. The subcarrier allocation rules are obtained by theoretical deduction. In the uplink subcarrier allocation algorithm, the subcarriers are allocated to the users with the best channel quality initially and then adjusted to improve the system performance. A cursory water‐filling level estimation method is used to decrease the complexity of the algorithm. Asymptotic performance analysis gives a lower bound of the stability of the water‐filling level estimation. The complexity and performance of the proposed radio resource allocation scheme are investigated by theoretical analysis and numerical results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
为了提高集中式认知网络的吞吐量,提出了基于信任度的吞吐量优化算法.该算法在主用户充分保护的前提下,以认知用户的吞吐量为目标函数,融合中心采用双门限值对本地感知结果进行融合.从理论上证明了吞吐量是全局漏检概率的增函数,当全局漏检概率等于门限值时,吞吐量达到最大值.并利用牛顿迭代法求出单节点概率,然后采用遍历法可得到认知用户吞吐量最大值.仿真结果表明,当信噪比为-14 dB时认知用户融合优化算法相对"AND准则"OR准则"以及"HALF准则"归一化吞吐量分别提高了0.62、0.3和0.09.  相似文献   

7.
认知无线电技术使得自组织网络节点能够充分利用空闲频谱资源,提高了传输性能。通过协作频谱感知,可有效解决由于无线信道存在阴影、噪声和衰落等情况导致的单节点感知准确性偏低。为了解决梯度算法随着协作节点数量增大后计算复杂度变高,文中提出部分梯度算法ψ-GBCS,该模型通过基于SNR的动态阈值保证了感知准确性,同时通过最佳协作节点数提高了感知效率。仿真结果表明,该模型下,综合评估系统效率和性能的J函数值提高37%,能耗降低50%,有效保证大规模认知自组网频谱感知的鲁棒性,降低了对主用户的干扰及设备功耗。  相似文献   

8.
In this paper, we propose a relatively complete and robust optimization model under the scenario where multisecondary users cooperatively sense multi‐channels. The objective of this model is to maximize the system throughput, meanwhile aims to jointly optimize the parameters including the sensing time and the weight coefficients of the sampling results. Because this model is a nonlinear optimization model, we instead adopt a heuristic sequential parameters optimization method (SPO) to solve the model. The method begins with deriving the lower bound of the objective function of the optimization model. Then, it maximizes this lower bound by optimizing the weight coefficients through solving a series of suboptimal problems using Lagrange method. Given that the weight coefficients are found, it finally transforms the problem into another monotonic programming problem and exploits a fast‐convergent polyblock algorithm to find an optimized sensing time parameter. We finally conduct extensive experiments by simulations. The results demonstrate that, in terms of the throughput gained by the system, SPO can deliver a solution that is up to 99.3% of the optimal on average, which indicates that SPO can solve the proposed optimization model effectively. In addition, we also show the performance advantage of the proposed model on improving the system throughput by comparing with other state‐of‐the‐art optimization models. Wireless Communications and Mobile Computing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
基于干扰消减的认知无线电频谱分配算法   总被引:1,自引:0,他引:1  
在认知无线电网络的频谱分配过程基础上,提出了一种基于干扰消减的频谱分配算法.该算法通过将可用频谱分配给能够同时无干扰地接入同一频谱的所有认知用户来提高授权频谱的使用率.同时,该算法参考各个认知用户在初始阶段的可用频谱数量来为未分配到频谱资源的认知用户进行频谱分配,对频谱分配过程的公平性进行了优化.仿真结果表明,该算法能够在认知用户数量较多、可用频谱紧张的情况下获得较高的吞吐量.  相似文献   

10.
Spectrum sensing is a key technique for determining the spectrum available in cognitive radio (CR) networks. In this paper, we study how to jointly optimize sensing time and resource allocation to maximize the sum transmission rate of all CR users of a multichannel CR network. We take into consideration the transmission power and interference constraints to protect primary users from harmful interference, as well as constraints of detection probability and false alarm probability. Under these constraints, we propose an asymptotically optimal resource allocation algorithm. The optimal sensing time can be obtained using the traditional one‐dimensional exhaustive search. However, owing to the high complexity of searching for the sensing time, we propose a simplified method to get the optimal sensing time under the assumption that false alarm probability is small. Simulation results show that the simplified method can obtain the optimal sensing time efficiently under strict constraint of false alarm probability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
刘婧  任品毅  薛少丽  张超 《通信学报》2011,32(11):183-190
针对认知无线网络中主用户行为将导致频谱瞬时变化而影响路由稳定性的问题,提出了一种基于主用户行为的路由和信道联合分配算法。该算法通过采用呼叫模型对主用户行为建模,并根据动态源路由协议的路由寻找机制,在目的节点等待多个路由请求分组后选择受主用户行为影响最小的路由,然后沿着所选定路径的反方向传送路由回复分组并完成信道分配。理论分析证明了算法中的链路平均持续时间期望与主用户活动概率成反比且具有与网络节点数成正比的计算复杂度。仿真结果表明,该算法具有比Gymkhana路由方案更高的分组投递率和更低的平均分组时延。  相似文献   

12.
Cognitive radio has attracted considerable attention because of its ability to make full use of the available spectrum resources for wireless terrestrial communication networks. In addition, the satellite communication scenario, which requires a transparent air interface to integrated/hybrid Satellite–Terrestrial communication systems and provides a supplement for other multimedia services, will cause frequency scarcity. Satellite communication systems based on cognitive radio are available under scenarios that involve transmission with changing communications. In this paper, a cooperative spectrum‐sensing algorithm based on a time or bandwidth‐based cooperative spectrum‐sensing model of an integrated/hybrid cooperative satellite communication system is proposed. Moreover, the concept of weighted cooperative spectrum sensing is introduced. Compared with the traditional single‐user spectrum‐sensing algorithm, the cooperative spectrum sensing is able to cope with the interference to the primary user caused by a secondary user better. In addition, multiple earth stations that use some part of the bandwidth cooperatively to perform spectrum sensing throughout the whole frame can detect the presence of primary user in time. The satellite component combines the sensing results from earth stations to reach a final decision, and the optimal combination weights to maximize the detection probability of the secondary user are obtained. Numerical results that demonstrate the performance of the proposed algorithm are presented. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a new channel allocation and re‐location scheme is proposed for cognitive radio users to efficiently utilize available spectrums. We also present a multiple‐dimension Markov analytical chain to evaluate the performance of this scheme. Both analytical results and simulation results demonstrate that the new scheme can enhance the radio system performance significantly in terms of blocking probability, dropping probability, and throughput of second users. The proposed scheme can work as a non‐server‐based channel allocation, which has practical values in real engineering design. Copyright ©2011 John Wiley & Sons, Ltd.  相似文献   

14.
In cognitive radio networks, since cognitive terminals use a shared wideband frequency spectrum for data transmissions, they are susceptible to malicious denial‐of‐service attacks, where adversaries try to corrupt communication by actively transmitting interference signals. To address this issue, in this paper, we propose a novel signal separation algorithm based on compressed sensing, which can not only recover the entire spectrum but also separate mixed occupying signals. Specifically, the proposed algorithm is executed following three steps: (i) each cognitive terminal attempts to recover all signals over an entire wideband spectrum employing the compressed sensing technique; (ii) all cognitive terminals send their recovered signals to the fusion center where a wavelet edge detection method is adopted to locate the spectrum edges of these signals and then divide the entire spectrum into several sub‐bands; (iii) the fusion center separates its received signals on each spectrum sub‐band into different categories according to their features. Both analytical and simulation results indicate that this novel compressed‐sensing‐based algorithm can effectively separate wideband signals at a low cost and combat interference of the malicious terminals in cognitive radio networks as well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
石露露  杨守义  张瑞哲  李燕 《电讯技术》2016,56(12):1310-1315
考虑到无线电频谱资源日益紧缺,提出了一种基于组间组内协作传输的多播组新机制,涉及多个多播组并使用同一频谱资源以协作方式传输信息。基于认知无线网络中该机制,研究了系统的资源优化配置,理论分析得出了功率分配方案,进而讨论了系统加权总传输速率的优化,同时考虑了主用户和认知用户之间信号干扰及功率限制对传输速率的影响,最优化用户性能。仿真结果表明,优化方案下多播组传输速率随用户人数的增加而上升,达到最优化用户服务质量;当功率限制时,通过设置加权因子,能够保证主用户拥有良好的通信性能。  相似文献   

16.
To decrease the interference to the primary user (PU) and improve the detected performance of cognitive radio (CR), a single‐band sensing scheme wherein the CR periodically senses the PU by cooperative spectrum sensing is proposed in this paper. In this scheme, CR first senses and then transmits during each period, and after the presence of the PU is detected, CR has to vacate to search another idle channel. The joint optimization algorithm based on the double optimization is proposed to optimize the periodical cooperative spectrum sensing scheme. The maximal throughput and minimal search time can be respectively obtained through the joint optimization of the local sensing time and the number of the cooperative CRs. We also extend this scheme to the periodical wideband cooperative spectrum sensing, and the joint optimization algorithm of the numbers of the sensing time slots and cooperative CRs is also proposed to obtain the maximal throughput of CR. The simulation shows that the proposed algorithm has lower computational quantity, and compared with the previous algorithms, when SNR = 5 dB, the throughput and search time of the proposed algorithm can respectively improve 0.3 kB and decrease 0.4 s. The simulation also indicates that the wideband cooperative spectrum sensing can achieve higher throughput than the single‐band cooperative spectrum sensing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
认知无线网络按需协同感知和信道分配   总被引:1,自引:0,他引:1  
李保罡  刘元安  刘凯明 《通信学报》2011,32(11):103-109
结合路由发现和维护过程中控制消息的广播特性,提出将频谱协同感知和信道分配的交互信息部分融入路由控制消息的方法。认知用户的信息交互随按需路由发现过程而启动,并在路由沿线建立协同感知节点簇,利用路由维护消息对该节点簇进行维护。同时以认知网络容量最大化为目标,提出将频谱协同感知和信道分配联合设计。仿真分析表明,减少了认知用户的信息交互开销,缓解了认知无线网络中控制信道的瓶颈影响,对空闲频谱进行了高效再利用。  相似文献   

18.
In this paper, channel assignment for spectrum sensing is studied in multi‐channel cognitive radio (CR) networks to maximize the number of channels satisfying sensing performance (called available channels). Beginning with a nonlinear integer programming problem, we derive the upper bound of optimal value through many‐to‐many assignment problem and then propose three algorithms for both centralized and distributed scenarios. In centralized case, a heuristic scheme is proposed based on the signal‐to‐noise ratios (SNRs) over all primary channels (PCs). Then, a greedy scheme is proposed to reduce the reported information from the CRs. In distributed case, a novel scheme with multi‐round operation is designed following the coalitional game theory. In each round, each CR selects some PCs based on SNRs. Then, the CRs selecting the same channel play coalitional game, and thereby, multiple games are played concurrently over multiple channels. Finally, the best coalition for each channel is chosen among the formed coalitions to perform the cooperative spectrum sensing. The simulation results show that the proposed schemes can significantly increase the number of available channels. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
We consider a cognitive radio network which coexists with multiple primary users (PUs) and secondary users (SUs) transmit over time‐varying channels. In this scenario, one problem of the existing work is the poor performances of throughput and fairness due to variances of SUs' channel conditions and PUs' traffic patterns. To solve this problem, we propose a novel prediction‐based MAC‐layer sensing algorithm. In the proposed algorithm, the SUs' channel quality information and the probability of the licensed channel being idle are predicted. Through the earlier predicted information, we schedule the SUs to sense and transmit on different licensed channels. Specifically, multiple significant factors, including network throughput and fairness, are jointly considered in the proposed algorithm. Then, we formulate the prediction‐based sensing scheduling problem as an optimization problem and solve it with the Hungarian algorithm in polynomial time. Simulation results show that the proposed prediction‐based sensing scheduling algorithm could achieve a good tradeoff between network throughput and fairness among SUs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we propose a low‐complexity resource allocation algorithm for the orthogonal frequency division multiplexing cooperative cognitive radio networks, where multiple primary users (PUs) and multiple secondary users (SUs) coexist. Firstly, we introduce a new concept of ‘efficiency capacity’ to represent the channel conditions of SUs by considering both of the interference caused by the PUs and the channel gains of the SUs with the assist of the relays. Secondly, we allocate the relay, subcarrier and transmission power jointly under the constraint of limiting interference caused to the PUs. Simulation results show that the proposed algorithm can achieve a high data rate with a relative low power level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号