首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

In this paper, we generalize conventional time division multiple access (TDMA) wireless networks to a new type of wireless networks coined generalized wireless powered communication networks (g-WPCNs). Our prime objective is to optimize the design of g-WPCNs where nodes are equipped with radio frequency (RF) energy harvesting circuitries along with constant energy supplies. This constitutes an important step towards a generalized optimization framework for more realistic systems, beyond prior studies where nodes are solely powered by the inherently limited RF energy harvesting. Towards this objective, we formulate two optimization problems with different objective functions, namely, maximizing the sum throughput and maximizing the minimum throughput (maxmin) to address fairness. First, we study the sum throughput maximization problem, investigate its complexity and solve it efficiently using an algorithm based on alternating optimization approach. Afterwards, we shift our attention to the maxmin optimization problem to improve the fairness limitations associated with the sum throughput maximization problem. The proposed problem is generalized, compared to prior work, as it seemlessly lends itself to prior formulations in the literature as special cases representing extreme scenarios, namely, conventional TDMA wireless networks (no RF energy harvesting) and standard WPCNs, with only RF energy harvesting nodes. In addition, the generalized formulation encompasses a scenario of practical interest we introduce, namely, WPCNs with two types of nodes (with and without RF energy harvesting capability) where legacy nodes without RF energy harvesting can be utilized to enhance the system sum throughput, even beyond WPCNs with all RF energy harvesting nodes studied earlier in the literature. We establish the convexity of all formulated problems which opens room for efficient solution using standard techniques. Our numerical results show that conventional TDMA wireless networks and WPCNs with only RF energy harvesting nodes are considered as lower bounds on the performance of the generalized problem setting in terms of the maximum sum throughput and maxmin throughput. Moreover, the results reveal valuable insights and throughput-fairness trade-offs unique to our new problem setting.

  相似文献   

2.
This study considers the problem of designing an efficient and low-cost infrastructure for connecting static multihop wireless networks with wired backbone, while ensuring QoS requirements such as bandwidth and delay. This infrastructure is useful for designing low-cost and fast deployed access networks in rural and suburban areas. It may also be used for providing access to sensor networks or for efficient facility placement in wireless networks. In these networks, some nodes are chosen as access points and function as gateways to access a wired backbone. Each access point serves a cluster of its nearby user, and a spanning tree rooted at the access point is used for message delivery. The study addresses both the design optimization and the operation aspects of the system. From the design perspective, we seek for a partition of the network nodes into a minimal number of disjoint clusters that satisfy multiple constraints; each cluster is required to be a connected graph with an upper bound on its radius. We assume that each node has a weight (representing its bandwidth requirement), and the total weight of all cluster nodes is also bounded. We show that these clustering requirements can be formulated as an instance of the capacitated facility location problem (CFLP) with additional constraints. By breaking the problem into two subproblems and solving each one separately, we propose polynomial time approximation algorithms that calculate solutions within a constant factor of the optimal ones. From the operation viewpoint, we introduce an adaptive delivery mechanism that maximizes the throughput of each cluster without violating the QoS constraints.  相似文献   

3.
The advanced technique of multiple beam antennas is recently considered in wireless networks to improve the system throughput by increasing spatial reuse, reducing collisions, and avoiding co‐channel interference. The usage of multiple beam antennas is similar to the concept of Space Division Multiple Access (SDMA), while each beam can be treated as a data channel. Wireless networks can increase the total throughput and decrease the transmission latency if the physical layer of a mobile node can support multirate capability. Multirate wireless networks incurs the anomaly problem, because low data rate hosts may influence the original performance of high data rate hosts. In this work, each node fits out multiple beam antennas with multirate capability, and a node can either simultaneously transmit or receive multiple data on multiple beams. Observe that the transmitting or receiving operation does not happen at the same time. In this paper, we propose a multiple relay‐based medium access control (MAC) protocol to improve the throughput for low data rate hosts. Our MAC protocol exploits multiple relay nodes and helps the source and the destination to create more than one data channel to significantly reduce the transmission latency. Observe that low data rate links with long‐distance transmission latencies are distributed by multiple relay nodes, hence the anomaly problem can be significantly alleviated. In addition, the ACK synchronization problem is solved to avoid the condition that source nodes do not receive ACKs from destination nodes. An adjustment operation is presented to reduce unnecessary relay nodes during the fragment burst period. Finally, simulation results illustrate that our multiple relay‐based MAC protocol can achieve high throughput and low transmission latency. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a cross‐layer analytical framework is proposed to analyze the throughput and packet delay of a two‐hop wireless link in wireless mesh network (WMN). It considers the adaptive modulation and coding (AMC) process in physical layer and the traffic queuing process in upper layers, taking into account the traffic distribution changes at the output node of each link due to the AMC process therein. Firstly, we model the wireless fading channel and the corresponding AMC process as a finite state Markov chain (FSMC) serving system. Then, a method is proposed to calculate the steady‐state output traffic of each node. Based on this, we derive a modified queuing FSMC model for the relay to gateway link, which consists of a relayed non‐Poisson traffic and an originated Poisson traffic, thus to evaluate the throughput at the mesh gateway. This analytical framework is verified by numerical simulations, and is easy to extend to multi‐hop links. Furthermore, based on the above proposed cross‐layer framework, we consider the problem of optimal power and bandwidth allocation for QoS‐guaranteed services in a two‐hop wireless link, where the total power and bandwidth resources are both sum‐constrained. Secondly, the practical optimal power allocation algorithm and optimal bandwidth allocation algorithm are presented separately. Then, the problem of joint power and bandwidth allocation is analyzed and an iterative algorithm is proposed to solve the problem in a simple way. Finally, numerical simulations are given to evaluate their performances. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we investigate the problem of optimal reliable relay selection in multiuser cooperative wireless networks in the presence of malicious relay nodes. A general discrete time queueing model for such networks is introduced which takes into account the dynamic variations of the channel state, the dynamic malicious behaviour of relay nodes as well as stochastic arrival of data packets into the system. The model consists of a set of mobile users, one destination node and a set of relay nodes which may be either mobile or fixed. The system uses the benefit of cooperative diversity by relaying in the decode and forward mode. We assume that each user either transmits its packets directly to the destination (direct mode) or transmits them with the cooperation of a selected relay node (cooperative mode). It is assumed that a centralized network controller manages the relay selection process in the system. At each time slot, a malicious relay node in the system may behave spitefully and refuse to cooperate with a user deliberately when it is selected to cooperate with that user. A malicious relay node usually acts stochastically to hide its malicious behaviour for longer time. In such a system, at each time slot the network controller should decide whether a user has to cooperate with any relay node or not and if so, which relay node must be selected for cooperation. First, we show that the malicious behaviour of relay nodes makes the stable throughput region shrink. Then, we propose a throughput optimal secure relay selection policy that can stabilize the system for all the arrival rate vectors strictly inside the network stability region. We show that the optimal policy is equivalent to finding the maximum weighted matching in a weighted bipartite graph at each time slot. Finally, we use simulations to compare the performance of the proposed policy with that of four other sub-optimal policies in terms of average queue occupancy (or queueing delay).  相似文献   

6.
无人机(UAV)与毫米波(mmWave)多输入多输出(MIMO)系统的结合可以提供高数据速率的空中链路,然而其部署位置及波束赋形设计直接影响无线通信系统的吞吐量.为实现多用户同时接入通信,该文提出基于离散透镜阵列(DLA)结构的波束空间预编码技术,构建了联合UAV飞行高度、波束选择及混合预编码的优化方案.为了解决这一涉...  相似文献   

7.
Wireless networks are now very essential part for modern ubiquitous communication systems. The design of efficient routing and scheduling techniques for such networks have gained importance to ensure reliable communication. Most of the currently proposed geographic routing protocols are designed for 2D spatial distribution of user nodes, although in many practical scenarios user nodes may be deployed in 3D space also. In this paper, we propose 3D routing protocols for multihop wireless networks that may be implemented in two different ways depending on how the routing paths are computed. When the routing paths to different user nodes from the base station in the wireless network are computed by the base station, we call it centralized protocol (3DMA‐CS). A distributed routing (3DMA‐DS) protocol is implemented when respective routing path of each user node to the base station is computed by the user node. In both of these protocols, the user (base station) selects the relay node to forward packets in the direction of destination, from the set of its neighbours, which makes minimum angle with the reference line drawn from user (base station) to the base station (user), within its transmission range. The proposed protocols are free from looping problem and can solve the void node problem (VNP) of multihop wireless networks. Performance analysis of the proposed protocol is shown by calculating end‐to‐end throughput, average path length, end‐to‐end delay, and energy consumption of each routing path through extensive simulation under different network densities and transmission ranges.  相似文献   

8.
In IEEE 802.11 infrastructure wireless local area network (WLAN), the communication between any two nodes is relayed by an access point (AP), which becomes the bottleneck of WLAN and severely restricts the overall throughput. It is well known that network coding technique is able to greatly improve the throughput of wireless networks. But, the available coding schemes do not make full advantage of channel capacity due to the fact that they pick at most one packet from each data flow for coding and the picked packets may have a great difference in packet size, wasting some channel capacity. To remedy the problem, in this paper, we propose the coding scheme that combines multiple buffered packets in one flow into a larger packet for coding so that the packets participating in coding have close sizes. We formulate an integer programming problem to find the optimal packet coding, which is solved by an optimal algorithm with relative high time complexity together with a heuristic algorithm with relative low time complexity. Simulation results show that the proposed coding scheme is able to greatly improve the throughput of WLAN and the throughput gain increases with the growth of the number of coding flows.  相似文献   

9.
Five‐phase reservation protocol (FPRP) is a contention‐based media access control protocol for wireless ad hoc networks. FPRP uses a five‐phase reservation process to establish slot assignments based on time division multiple access. It allows a node to reserve only one slot in an information frame. Once a node has reserved a slot, it will cease contending for other slots. As a result, there may be less contending nodes in the remaining slots, so the time slots in an information frame are not fully used by FPRP. To improve time slot utilization, this paper proposes an improved pseudo‐Bayesian algorithm, based on which an improved contention access mechanism for FPRP is proposed, in which nodes are allowed to contend for more than one slot in a reservation frame according to a certain probability/priority. Simulation results indicate that the proposed mechanism performs better than FPRP in time slot utilization and hence the network throughput under various scenarios.  相似文献   

10.
Using network coding in a wireless network can potentially improve the network throughput. On the other hand, it increases the complexity of resource allocations as the quality of one transmission is affected by the link conditions of the transmitter to multiple receivers. In this work, we study time slot scheduling and channel allocations jointly for a network with bidirectional relaying links, where the two end nodes of each link can exchange data through a relay node. Two scenarios are considered when the relay node forwards packets to the end nodes. In the first scenario, the relay node always forwards network‐coded packets to both end nodes simultaneously; in the second scenario, the relay node opportunistically uses network coding for two‐way relaying and traditional one‐way relaying. For each scenario, an optimization problem is first formulated for maximizing the total network throughput. The optimum scheduling is not causal because it requires future information of channel conditions. We then propose heuristic scheduling schemes. The slot‐based scheduling maximizes the total transmission rate of all the nodes at each time slot, and the node‐based scheduling schedules transmissions based on achievable transmission rates of individual nodes at different channels. The node‐based one has lower complexity than the slot‐based one. Our results indicate that although the node‐based scheduling achieves slightly lower throughput than the slot‐based one, both the proposed scheduling schemes are very effective in the sense that the difference between their throughput and the optimum scheduling is relatively small in different network settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Smart antenna technology is introduced to wireless mesh networks. Smart antennas based wider-range access medium access control (MAC) protocol (SWAMP) is used as MAC protocol for IEEE 802.11 mesh networks in this study. The calculation method of node throughput in chain and arbitrary topology is proposed under nodes fairness guarantee. Network scale and interference among nodes are key factors that influence node throughput. Node distribution pattern near the gateway also affects the node throughput. Experiment based on network simulator-2 (NS-2) simulation platform compares node throughput between smart antenna scenario and omni-antenna scenario. As smart antenna technology reduces the bottle collision domain, node throughput increases observably.  相似文献   

12.
Recently, benefiting from rapid development of energy harvesting technologies, the research trend of wireless sensor networks has shifted from the battery‐powered network to the one that can harvest energy from ambient environments. In such networks, a proper use of harvested energy poses plenty of challenges caused by numerous influence factors and complex application environments. Although numerous works have been based on the energy status of sensor nodes, no work refers to the issue of minimizing the overall data transmission cost by adjusting transmission power of nodes in energy‐harvesting wireless sensor networks. In this paper, we consider the optimization problem of deriving the energy‐neutral minimum cost paths between the source nodes and the sink node. By introducing the concept of energy‐neutral operation, we first propose a polynomial‐time optimal algorithm for finding the optimal path from a single source to the sink by adjusting the transmission powers. Based on the work earlier, another polynomial‐time algorithm is further proposed for finding the approximated optimal paths from multiple sources to the sink node. Also, we analyze the network capacity and present a near‐optimal algorithm based on the Ford–Fulkerson algorithm for approaching the maximum flow in the given network. We have validated our algorithms by various numerical results in terms of path capacity, least energy of nodes, energy ratio, and path cost. Simulation results show that the proposed algorithms achieve significant performance enhancements over existing schemes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Numerous routing protocols have been proposed for wireless networks. A common assumption made by the majority of these protocols is that each wireless node will follow the prescribed protocol without any deviation. This may not be true in practice since wireless nodes could be owned by users who perform in their own interests. We then have to design routing protocols that still work properly even for networks composed of selfish nodes. In this paper, we propose a unicast routing protocol to address this issue under the assumption that all networking nodes are rational. Here, a node is rational if it always chooses a strategy that maximizes its benefit. We assume that each node has a privately known cost of relaying a unit of data for other nodes. In our protocol, each wireless node has to declare a cost for forwarding a unit of data. When a node wants to send data to the access point, it first computes the least cost path to the access point and then computes a payment to each node on this path. We present a pricing mechanism such that the profit of each relay node is maximized when it declares its true cost. We also give a time optimal method to compute the payment in a centralized manner. We then discuss in detail how to implement the routing protocol in the distributed manner. We conduct extensive simulations to study the ratio of the total payment over the total cost incurred by all relay nodes. We find that this ratio is small in practice. Our protocol works when the wireless nodes will not collude and we show that no truthful mechanism can avoid the collusion of any pair of two nodes. We also give a truthful mechanism when a node only colludes with its neighbors.  相似文献   

14.
In this paper, we propose an urgency‐ and efficiencybased wireless packet scheduling (UEPS) algorithm that is able to schedule real‐time (RT) and non‐real‐time (NRT) traffics at the same time while supporting multiple users simultaneously at any given scheduling time instant. The UEPS algorithm is designed to support wireless downlink packet scheduling in an orthogonal frequency division multiple access (OFDMA) system, which is a strong candidate as a wireless access method for the next generation of wireless communications. The UEPS algorithm uses the time‐utility function as a scheduling urgency factor and the relative status of the current channel to the average channel status as an efficiency indicator of radio resource usage. The design goal of the UEPS algorithm is to maximize throughput of NRT traffics while satisfying quality‐of‐service (QoS) requirements of RT traffics. The simulation study shows that the UEPS algorithm is able to give better throughput performance than existing wireless packet scheduling algorithms such as proportional fair (PF) and modifiedlargest weighted delay first (M‐LWDF), while satisfying the QoS requirements of RT traffics such as average delay and packet loss rate under various traffic loads.  相似文献   

15.
In wireless sensor networks (WSN), which are composed of unreliable sensor nodes, preserving the connectivity is a serious problem and one of the most effective solutions of this problem is to deploy powerful relay nodes (RN). The location of the RN is an important parameter for the network performance. In this paper, we investigate relay node placement (RNP) problem on a weighted terrain structure to satisfy WSN connectivity. Contrary to the existing studies, instead of minimizing the number of RN, the main objective of weighted RNP is to minimize the total weight of the points on which RN are deployed. In order to solve the weighted RNP problem, a mathematical formulation is proposed to find the optimal solution. However, because of the NP-complete nature of the problem, a polynomial time heuristic algorithm is also developed. Performance results show that the proposed heuristic algorithm can find near-optimal solutions in a reasonable time bound.  相似文献   

16.
In mesh networks architecture, it should be permitted to visit the mobile client points. Whereas in mesh networks environment, the main throughput flows usually communicate with the conventional wired network. The so‐called gateway nodes can link directly to traditional Ethernet, depending on these mesh nodes, and can obtain access to data sources that are related to the Ethernet. In wireless mesh networks (WMNs), the quantities of gateways are limited. The packet‐processing ability of settled wireless nodes is limited. Consequently, throughput loads of mesh nodes highly affect the network performance. In this paper, we propose a queuing system that relied on traffic model for WMNs. On the basis of the intelligent adaptivenes, the model considers the influences of interference. Using this intelligent model, service stations with boundless capacity are defined as between gateway and common nodes based on the largest hop count from the gateways, whereas the other nodes are modeled as service stations with certain capacity. Afterwards, we analyze the network throughput, mean packet loss ratio, and packet delay on each hop node with the adaptive model proposed. Simulations show that the intelligent and adaptive model presented is precise in modeling the features of traffic loads in WMNs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Random access has been studied for decades as a simple and practical wireless medium access control (MAC). Some of the recently developed distributed scheduling algorithms for throughput or utility maximization also take the form of random access, although extensive message passing among the nodes is required. In this paper, we would like to answer this question: is it possible to design a MAC algorithm that can achieve the optimal network utility without message passing? We provide the first positive answer to this question through a simple Aloha-type random access protocol. We prove the convergence of our algorithm for certain sufficient conditions on the system parameters, e.g., with a large enough user population. If each wireless node is capable of decoding the source MAC address of the transmitter from the interferring signal, then our algorithm indeed converges to the global optimal solution of the NUM problem. If such decoding is inaccurate, then the algorithm still converges, although optimality may not be always guaranteed. Proof of these surprisingly strong performance properties of our simple random access algorithm leverages the idea from distributed learning: each node can learn as much about the contention environment through the history of collision as through instantaneous but explicit message passing.  相似文献   

18.
Wireless energy transmission is considered in the Internet-of-Things (IoT) dual-hop communication systems. The power splitting method is employed at the relay node to receive the wireless energy and the wireless information simultaneously from the source to the relay node in the first resource block. With the harvested energy at the relay node, one wireless information node and one wireless energy harvest node are served simultaneously by the relay node in the second resource block. The optimization problem is formulated to maximize the energy efficiency defined as the ratio of the wireless information throughput of the first destination node over the power consumed by the whole IoT systems, which is subject to the required minimum energy harvested at the second destination node of the energy transfer. To tackle the non-convex problem, the exact expression of the wireless information throughput is approximated by the high signal to noise ratio (SNR) approximation method, which is shown very tight to the exact expression. Hence, the asymptotically optimal solution is derived in analytical expression by employing the Lagrangian method. Numerical simulations verify the performance of the proposed scheme.  相似文献   

19.
We consider a ‘Social Group’ of networked nodes, seeking a ‘universe’ of segments. Each node has a subset of the universe and access to an expensive resource for downloading data. Nodes can also acquire the universe by exchanging copies of segments among themselves, at low cost, using inter‐node links. While exchanges over inter‐node links ensure minimum cost, some nodes in the group try to exploit the system. We term such nodes as ‘non‐reciprocating nodes’ and prohibit such behavior by proposing the ‘give‐and‐take’ criterion, where exchange is allowed if each node has segments unavailable with the other. Under this criterion, we consider the problem of maximizing the number of nodes with the universe at the end of local exchanges. First, we present a randomized algorithm that is shown to be optimal in the asymptotic regime. Then, we present greedy links algorithm, which performs well for most of the scenarios and yields an optimal result when the number of nodes is four. The polygon algorithm is proposed, which yields an optimal result when each of the nodes has a unique segment. After presenting some intuitive algorithms (e.g., greedy incremental algorithm and rarest first algorithm), we compare the performances of all proposed algorithms with the optimal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Modern wireless communication networks frequently have lower application throughput due to higher number of collisions and subsequent retransmission of data packets. Moreover, these networks are characterized by restricted computational capacity due to limited node‐battery power. These challenges can be assessed for deploying fast, reliable network design with resource‐restrained operation by means of concurrent optimization of multiple performance parameters across different layers of the conventional protocol stack. This optimization can be efficiently accomplished via cross‐layer design with the aid of network coding technique and optimal allocation of limited resources to wireless links. In this paper, we evaluate and analyze intersession coding across several source–destination pairs in random access ad hoc networks with inherent power scarcity and variable capacity links. The proposed work addresses the problem of joint optimal coding, rate control, power control, contention, and flow control schemes for multi‐hop heterogeneous networks with correlated sources. For this, we employ cross‐layer design for multiple unicast sessions in the system with network coding and bandwidth constraints. This model is elucidated for global optimal solution using CVX software through disciplined convex programming technique to find the improved throughput and power allocation. Simulation results show that the proposed model effectively incorporates throughput and link power management while satisfying flow conservation, bit error rate, data compression, power outage, and capacity constraints of the challenged wireless networks. Finally, we compare our model with three previous algorithms to demonstrate its efficacy and superiority in terms of various performance metrics such as transmission success probability, throughput, power efficiency, and delay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号