首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bagging, boosting, rotation forest and random subspace methods are well known re-sampling ensemble methods that generate and combine a diversity of learners using the same learning algorithm for the base-classifiers. Boosting and rotation forest algorithms are considered stronger than bagging and random subspace methods on noise-free data. However, there are strong empirical indications that bagging and random subspace methods are much more robust than boosting and rotation forest in noisy settings. For this reason, in this work we built an ensemble of bagging, boosting, rotation forest and random subspace methods ensembles with 6 sub-classifiers in each one and then a voting methodology is used for the final prediction. We performed a comparison with simple bagging, boosting, rotation forest and random subspace methods ensembles with 25 sub-classifiers, as well as other well known combining methods, on standard benchmark datasets and the proposed technique had better accuracy in most cases.  相似文献   

2.
Ensemble systems are classification structures that apply a two‐level decision‐making process, in which the first level produces the outputs of the individual classifiers and the second level produces the output of the combination method (final output). Although ensemble systems have been proven to be efficient for pattern recognition tasks, its efficient design is not an easy task. This article investigates the influence of two diversity measures when used explicitly to guide the design of ensemble systems. These diversity measures were proposed recently, and they proved to be very interesting for the diversity–accuracy dilemma. To perform this investigation, we will use two well‐known optimization techniques, genetic algorithms, and tabu search, in their mono‐objective and multiobjective versions. As objectives of the optimization techniques, we use error rate and two diversity measures as well as all possible combinations of these three objectives. In this article, we aim to analyze which set of objectives can generate more accurate ensembles. In addition, we aim to analyze whether or not the diversity measures (good and bad diversities) have a positive effect in the design of ensemble systems, mainly if they can replace the error rate as an optimization objective without incurring significant losses in the accuracy level of the generated ensembles.  相似文献   

3.
Several pruning strategies that can be used to reduce the size and increase the accuracy of bagging ensembles are analyzed. These heuristics select subsets of complementary classifiers that, when combined, can perform better than the whole ensemble. The pruning methods investigated are based on modifying the order of aggregation of classifiers in the ensemble. In the original bagging algorithm, the order of aggregation is left unspecified. When this order is random, the generalization error typically decreases as the number of classifiers in the ensemble increases. If an appropriate ordering for the aggregation process is devised, the generalization error reaches a minimum at intermediate numbers of classifiers. This minimum lies below the asymptotic error of bagging. Pruned ensembles are obtained by retaining a fraction of the classifiers in the ordered ensemble. The performance of these pruned ensembles is evaluated in several benchmark classification tasks under different training conditions. The results of this empirical investigation show that ordered aggregation can be used for the efficient generation of pruned ensembles that are competitive, in terms of performance and robustness of classification, with computationally more costly methods that directly select optimal or near-optimal subensembles.  相似文献   

4.
《Information Fusion》2009,10(2):150-162
Information fusion research has recently focused on the characteristics of the decision profiles of ensemble members in order to optimize performance. These characteristics are particularly important in the selection of ensemble members. However, even though the control of overfitting is a challenge in machine learning problems, much less work has been devoted to the control of overfitting in selection tasks. The objectives of this paper are: (1) to show that overfitting can be detected at the selection stage; and (2) to present strategies to control overfitting. Decision trees and k nearest neighbors classifiers are used to create homogeneous ensembles, while single- and multi-objective genetic algorithms are employed as search algorithms at the selection stage. In this study, we use bagging and random subspace methods for ensemble generation. The classification error rate and a set of diversity measures are applied as search criteria. We show experimentally that the selection of classifier ensembles conducted by genetic algorithms is prone to overfitting, especially in the multi-objective case. In this study, the partial validation, backwarding and global validation strategies are tailored for classifier ensemble selection problem and compared. This comparison allows us to show that a global validation strategy should be applied to control overfitting in pattern recognition systems involving an ensemble member selection task. Furthermore, this study has helped us to establish that the global validation strategy can be used to measure the relationship between diversity and classification performance when diversity measures are employed as single-objective functions.  相似文献   

5.
Many techniques have been proposed for credit risk assessment, from statistical models to artificial intelligence methods. During the last few years, different approaches to classifier ensembles have successfully been applied to credit scoring problems, demonstrating to be generally more accurate than single prediction models. The present paper goes one step beyond by introducing composite ensembles that jointly use different strategies for diversity induction. Accordingly, the combination of data resampling algorithms (bagging and AdaBoost) and attribute subset selection methods (random subspace and rotation forest) for the construction of composite ensembles is explored with the aim of improving the prediction performance. The experimental results and statistical tests show that this new two-level classifier ensemble constitutes an appropriate solution for credit scoring problems, performing better than the traditional single ensembles and very significantly better than individual classifiers.  相似文献   

6.
Correlated information between multiple views can provide useful information for building robust classifiers. One way to extract correlated features from different views is using canonical correlation analysis (CCA). However, CCA is an unsupervised method and can not preserve discriminant information in feature extraction. In this paper, we first incorporate discriminant information into CCA by using random cross-view correlations between within-class examples. Because of the random property, we can construct a lot of feature extractors based on CCA and random correlation. So furthermore, we fuse those feature extractors and propose a novel method called random correlation ensemble (RCE) for multi-view ensemble learning. We compare RCE with existing multi-view feature extraction methods including CCA and discriminant CCA (DCCA) which use all cross-view correlations between within-class examples, as well as the trivial ensembles of CCA and DCCA which adopt standard bagging and boosting strategies for ensemble learning. Experimental results on several multi-view data sets validate the effectiveness of the proposed method.  相似文献   

7.
Ensembles of classifiers that are trained on different parts of the input space provide good results in general. As a popular boosting technique, AdaBoost is an iterative and gradient based deterministic method used for this purpose where an exponential loss function is minimized. Bagging is a random search based ensemble creation technique where the training set of each classifier is arbitrarily selected. In this paper, a genetic algorithm based ensemble creation approach is proposed where both resampled training sets and classifier prototypes evolve so as to maximize the combined accuracy. The objective function based random search procedure of the resultant system guided by both ensemble accuracy and diversity can be considered to share the basic properties of bagging and boosting. Experimental results have shown that the proposed approach provides better combined accuracies using a fewer number of classifiers than AdaBoost.  相似文献   

8.
Ensemble learning is a popular classification method where many individual simple learners contribute to a final prediction. Constructing an ensemble of learners has been shown to often improve prediction accuracy over a single learner. Bagging and boosting are the most common ensemble methods, each with distinct advantages. While boosting methods are typically very tunable with numerous parameters, to date, the type of flexibility this allows has been missing for general bagging ensembles. In this paper, we propose a new tunable weighted bagged ensemble methodology, resulting in a very flexible method for classification. We explore the impact tunable weighting has on the votes of each learner in an ensemble and compare the results with pure bagging and the best known bagged ensemble method, namely, the random forest.  相似文献   

9.
Incremental construction of classifier and discriminant ensembles   总被引:2,自引:0,他引:2  
We discuss approaches to incrementally construct an ensemble. The first constructs an ensemble of classifiers choosing a subset from a larger set, and the second constructs an ensemble of discriminants, where a classifier is used for some classes only. We investigate criteria including accuracy, significant improvement, diversity, correlation, and the role of search direction. For discriminant ensembles, we test subset selection and trees. Fusion is by voting or by a linear model. Using 14 classifiers on 38 data sets, incremental search finds small, accurate ensembles in polynomial time. The discriminant ensemble uses a subset of discriminants and is simpler, interpretable, and accurate. We see that an incremental ensemble has higher accuracy than bagging and random subspace method; and it has a comparable accuracy to AdaBoost, but fewer classifiers.  相似文献   

10.
The global prediction of a homogeneous ensemble of classifiers generated in independent applications of a randomized learning algorithm on a fixed training set is analyzed within a Bayesian framework. Assuming that majority voting is used, it is possible to estimate with a given confidence level the prediction of the complete ensemble by querying only a subset of classifiers. For a particular instance that needs to be classified, the polling of ensemble classifiers can be halted when the probability that the predicted class will not change when taking into account the remaining votes is above the specified confidence level. Experiments on a collection of benchmark classification problems using representative parallel ensembles, such as bagging and random forests, confirm the validity of the analysis and demonstrate the effectiveness of the instance-based ensemble pruning method proposed.  相似文献   

11.
特征选择有助于增强集成分类器成员间的随机差异性,从而提高泛化精度。研究了随机子空间法(RandomSub-space)和旋转森林法(RotationForest)两种基于特征选择的集成分类器构造算法,分析讨论了两算法特征选择的方式与随机差异程度之间的关系。通过对UCI数据集引入噪声,比较两者在噪声环境下的分类精度。实验结果表明:当噪声增加及特征关联度下降时,基本学习算法及噪声程度对集成效果均有影响,当噪声增强到一定程度后。集成效果和单分类器的性能趋于一致。  相似文献   

12.
The aim of bankruptcy prediction in the areas of data mining and machine learning is to develop an effective model which can provide the higher prediction accuracy. In the prior literature, various classification techniques have been developed and studied, in/with which classifier ensembles by combining multiple classifiers approach have shown their outperformance over many single classifiers. However, in terms of constructing classifier ensembles, there are three critical issues which can affect their performance. The first one is the classification technique actually used/adopted, and the other two are the combination method to combine multiple classifiers and the number of classifiers to be combined, respectively. Since there are limited, relevant studies examining these aforementioned disuses, this paper conducts a comprehensive study of comparing classifier ensembles by three widely used classification techniques including multilayer perceptron (MLP) neural networks, support vector machines (SVM), and decision trees (DT) based on two well-known combination methods including bagging and boosting and different numbers of combined classifiers. Our experimental results by three public datasets show that DT ensembles composed of 80–100 classifiers using the boosting method perform best. The Wilcoxon signed ranked test also demonstrates that DT ensembles by boosting perform significantly different from the other classifier ensembles. Moreover, a further study over a real-world case by a Taiwan bankruptcy dataset was conducted, which also demonstrates the superiority of DT ensembles by boosting over the others.  相似文献   

13.
We present attribute bagging (AB), a technique for improving the accuracy and stability of classifier ensembles induced using random subsets of features. AB is a wrapper method that can be used with any learning algorithm. It establishes an appropriate attribute subset size and then randomly selects subsets of features, creating projections of the training set on which the ensemble classifiers are built. The induced classifiers are then used for voting. This article compares the performance of our AB method with bagging and other algorithms on a hand-pose recognition dataset. It is shown that AB gives consistently better results than bagging, both in accuracy and stability. The performance of ensemble voting in bagging and the AB method as a function of the attribute subset size and the number of voters for both weighted and unweighted voting is tested and discussed. We also demonstrate that ranking the attribute subsets by their classification accuracy and voting using only the best subsets further improves the resulting performance of the ensemble.  相似文献   

14.
Increasing the accuracy of thematic maps produced through the process of image classification has been a hot topic in remote sensing. For this aim, various strategies, classifiers, improvements, and their combinations have been suggested in the literature. Ensembles that combine the prediction of individual classifiers with weights based on the estimated prediction accuracies are strategies aiming to improve the classifier performances. One of the recently introduced ensembles is the rotation forest, which is based on the idea of building accurate and diverse classifiers by applying feature extraction to the training sets and then reconstructing new training sets for each classifier. In this study, the effectiveness of the rotation forest was investigated for decision trees in land-use and land-cover (LULC) mapping, and its performance was compared with performances of the six most widely used ensemble methods. The results were verified for the effectiveness of the rotation forest ensemble as it produced the highest classification accuracies for the selected satellite data. When the statistical significance of differences in performances was analysed using McNemar's tests based on normal and chi-squared distributions, it was found that the rotation forest method outperformed the bagging, Diverse Ensemble Creation by Oppositional Relabelling of Artificial Training Examples (DECORATE), and random subspace methods, whereas the performance differences with the other ensembles were statistically insignificant.  相似文献   

15.
一种基于旋转森林的集成协同训练算法   总被引:1,自引:0,他引:1       下载免费PDF全文
集成协同训练算法(ensemble co-training)是将集成学习(ensemble learning)和协同训练算法(co-training)相结合的半监督学习方法,旋转森林(rotation forest)是利用特征提取来构造基分类器差异性的集成学习方法,在对现有的集成协同训练算法研究基础上,提出了基于旋转森林的协同训练算法——ROFCO,该方法重在利用未标记数据提高基分类器之间的差异性和特征提取效果,使基分类器的泛化误差保持不变或下降的同时,能保持甚至提高基分类器之间的差异性,提高集成效果。实验结果表明该方法能取得较好效果。  相似文献   

16.
Classification is the most used supervized machine learning method. As each of the many existing classification algorithms can perform poorly on some data, different attempts have arisen to improve the original algorithms by combining them. Some of the best know results are produced by ensemble methods, like bagging or boosting. We developed a new ensemble method called allocation. Allocation method uses the allocator, an algorithm that separates the data instances based on anomaly detection and allocates them to one of the micro classifiers, built with the existing classification algorithms on a subset of training data. The outputs of micro classifiers are then fused together into one final classification. Our goal was to improve the results of original classifiers with this new allocation method and to compare the classification results with existing ensemble methods. The allocation method was tested on 30 benchmark datasets and was used with six well known basic classification algorithms (J48, NaiveBayes, IBk, SMO, OneR and NBTree). The obtained results were compared to those of the basic classifiers as well as other ensemble methods (bagging, MultiBoost and AdaBoost). Results show that our allocation method is superior to basic classifiers and also to tested ensembles in classification accuracy and f-score. The conducted statistical analysis, when all of the used classification algorithms are considered, confirmed that our allocation method performs significantly better both in classification accuracy and f-score. Although the differences are not significant for each of the used basic classifier alone, the allocation method achieved the biggest improvements on all six basic classification algorithms. In this manner, allocation method proved to be a competitive ensemble method for classification that can be used with various classification algorithms and can possibly outperform other ensembles on different types of data.  相似文献   

17.
Recent researches in fault classification have shown the importance of accurately selecting the features that have to be used as inputs to the diagnostic model. In this work, a multi-objective genetic algorithm (MOGA) is considered for the feature selection phase. Then, two different techniques for using the selected features to develop the fault classification model are compared: a single classifier based on the feature subset with the best classification performance and an ensemble of classifiers working on different feature subsets. The motivation for developing ensembles of classifiers is that they can achieve higher accuracies than single classifiers. An important issue for an ensemble to be effective is the diversity in the predictions of the base classifiers which constitute it, i.e. their capability of erring on different sub-regions of the pattern space. In order to show the benefits of having diverse base classifiers in the ensemble, two different ensembles have been developed: in the first, the base classifiers are constructed on feature subsets found by MOGAs aimed at maximizing the fault classification performance and at minimizing the number of features of the subsets; in the second, diversity among classifiers is added to the MOGA search as the third objective function to maximize. In both cases, a voting technique is used to effectively combine the predictions of the base classifiers to construct the ensemble output. For verification, some numerical experiments are conducted on a case of multiple-fault classification in rotating machinery and the results achieved by the two ensembles are compared with those obtained by a single optimal classifier.  相似文献   

18.
Training set resampling based ensemble design techniques are successfully used to reduce the classification errors of the base classifiers. Boosting is one of the techniques used for this purpose where each training set is obtained by drawing samples with replacement from the available training set according to a weighted distribution which is modified for each new classifier to be included in the ensemble. The weighted resampling results in a classifier set, each being accurate in different parts of the input space mainly specified the sample weights. In this study, a dynamic integration of boosting based ensembles is proposed so as to take into account the heterogeneity of the input sets. An evidence-theoretic framework is developed for this purpose so as to take into account the weights and distances of the neighboring training samples in both training and testing boosting based ensembles. The effectiveness of the proposed technique is compared to the AdaBoost algorithm using three different base classifiers.  相似文献   

19.
Ensembles of classifiers are among the best performing classifiers available in many data mining applications, including the mining of data streams. Rather than training one classifier, multiple classifiers are trained, and their predictions are combined according to a given voting schedule. An important prerequisite for ensembles to be successful is that the individual models are diverse. One way to vastly increase the diversity among the models is to build an heterogeneous ensemble, comprised of fundamentally different model types. However, most ensembles developed specifically for the dynamic data stream setting rely on only one type of base-level classifier, most often Hoeffding Trees. We study the use of heterogeneous ensembles for data streams. We introduce the Online Performance Estimation framework, which dynamically weights the votes of individual classifiers in an ensemble. Using an internal evaluation on recent training data, it measures how well ensemble members performed on this and dynamically updates their weights. Experiments over a wide range of data streams show performance that is competitive with state of the art ensemble techniques, including Online Bagging and Leveraging Bagging, while being significantly faster. All experimental results from this work are easily reproducible and publicly available online.  相似文献   

20.
《Information Fusion》2003,4(2):87-100
A popular method for creating an accurate classifier from a set of training data is to build several classifiers, and then to combine their predictions. The ensembles of simple Bayesian classifiers have traditionally not been a focus of research. One way to generate an ensemble of accurate and diverse simple Bayesian classifiers is to use different feature subsets generated with the random subspace method. In this case, the ensemble consists of multiple classifiers constructed by randomly selecting feature subsets, that is, classifiers constructed in randomly chosen subspaces. In this paper, we present an algorithm for building ensembles of simple Bayesian classifiers in random subspaces. The EFS_SBC algorithm includes a hill-climbing-based refinement cycle, which tries to improve the accuracy and diversity of the base classifiers built on random feature subsets. We conduct a number of experiments on a collection of 21 real-world and synthetic data sets, comparing the EFS_SBC ensembles with the single simple Bayes, and with the boosted simple Bayes. In many cases the EFS_SBC ensembles have higher accuracy than the single simple Bayesian classifier, and than the boosted Bayesian ensemble. We find that the ensembles produced focusing on diversity have lower generalization error, and that the degree of importance of diversity in building the ensembles is different for different data sets. We propose several methods for the integration of simple Bayesian classifiers in the ensembles. In a number of cases the techniques for dynamic integration of classifiers have significantly better classification accuracy than their simple static analogues. We suggest that a reason for that is that the dynamic integration better utilizes the ensemble coverage than the static integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号