首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The advances in the size, cost of deployment, and user‐friendly interface of wireless sensor devices have given rise to many wireless sensor network (WSN) applications. WSNs need to use protocols for transmitting data samples from event regions to sink through minimum cost links. Clustering is a commonly used method of data aggregation in which nodes are organized into groups to reduce energy consumption. Nonetheless, cluster head (CH) has to bear an additional load in clustering protocols to organize different activities within the cluster. Proper CH selection and load balancing using efficient routing protocol is therefore a critical aspect for WSN's long‐term operation. In this paper, a threshold‐sensitive energy‐efficient cluster‐based routing protocol based on flower pollination algorithm (FPA) is proposed to extend the network's stability period. Using FPA, multihop communication between CHs and base station is used to achieve optimal link costs for load balancing distant CHs and energy minimization. Analysis and simulation results show that the proposed algorithm significantly outperforms competitive clustering algorithms in terms of energy consumption, stability period, and system lifetime.  相似文献   

2.
In wireless sensor networks (WSNs), clustering has been shown to be an efficient technique to improve scalability and network lifetime. In clustered networks, clustering creates unequal load distribution among cluster heads (CHs) and cluster member (CM) nodes. As a result, the entire network is subject to premature death because of the deficient active nodes within the network. In this paper, we present clustering‐based routing algorithms that can balance out the trade‐off between load distribution and network lifetime “green cluster‐based routing scheme.” This paper proposes a new energy‐aware green cluster‐based routing algorithm to preventing premature death of large‐scale dense WSNs. To deal with the uncertainty present in network information, a fuzzy rule‐based node classification model is proposed for clustering. Its primary benefits are flexibility in selecting effective CHs, reliability in distributing CHs overload among the other nodes, and reducing communication overhead and cluster formation time in highly dense areas. In addition, we propose a routing scheme that balances the load among sensors. The proposed scheme is evaluated through simulations to compare our scheme with the existing algorithms available in the literature. The numerical results show the relevance and improved efficiency of our scheme.  相似文献   

3.
Energy conserving of sensor nodes is the most crucial issue in the design of wireless sensor networks (WSNs). In a cluster based routing approach, cluster heads (CHs) cooperate with each other to forward their data to the base station (BS) via multi-hop routing. In this process, CHs closer to the BS are burdened with heavier relay traffic and tend to die prematurely which causes network partition is popularly known as a hot spot problem. To mitigate the hot spot problem, in this paper, we propose unequal clustering and routing algorithms based on novel chemical reaction optimization (nCRO) paradigm, we jointly call these algorithms as novel CRO based unequal clustering and routing algorithms (nCRO-UCRA). In clustering, we partition the network into unequal clusters such that smaller size clusters near to the sink and larger size clusters relatively far away from the sink. For this purpose, we develop the CH selection algorithm based on nCRO paradigm and assign the non-cluster head sensor nodes to the CHs based on derived cost function. Then, a routing algorithm is presented which is also based on nCRO based approach. All these algorithms are developed with the efficient schemes of molecular structure encoding and novel potential energy functions. The nCRO-UCRA is simulated extensively on various scenarios of WSNs and varying number of sensors and the CHs. The results are compared with some existing algorithms and original CRO based algorithm called as CRO-UCRA to show the superiority in terms of various performance metrics like residual energy, network lifetime, number of alive nodes, data packets received by the BS and convergence rate.  相似文献   

4.
Designing energy efficient communication protocols for wireless sensor networks (WSNs) to conserve the sensors' energy is one of the prime concerns. Clustering in WSNs significantly reduces the energy consumption in which the nodes are organized in clusters, each having a cluster head (CH). The CHs collect data from their cluster members and transmit it to the base station via a single or multihop communication. The main issue in such mechanism is how to associate the nodes to CHs and how to route the data of CHs so that the overall load on CHs are balanced. Since the sensor nodes operate autonomously, the methods designed for WSNs should be of distributed nature, i.e., each node should run it using its local information only. Considering these issues, we propose a distributed multiobjective‐based clustering method to assign a sensor node to appropriate CH so that the load is balanced. We also propose an energy‐efficient routing algorithm to balance the relay load among the CHs. In case any CH dies, we propose a recovery strategy for its cluster members. All our proposed methods are completely distributed in nature. Simulation results demonstrate the efficiency of the proposed algorithm in terms of energy consumption and hence prolonging the network lifetime. We compare the performance of the proposed algorithm with some existing algorithms in terms of number of alive nodes, network lifetime, energy efficiency, and energy population.  相似文献   

5.
In an energy‐constrained wireless sensor networks (WSNs), clustering is found to be an effective strategy to minimize the energy depletion of sensor nodes. In clustered WSNs, network is partitioned into set of clusters, each having a coordinator called cluster head (CH), which collects data from its cluster members and forwards it to the base station (BS) via other CHs. Clustered WSNs often suffer from the hot spot problem where CHs closer to the BS die much early because of high energy consumption contributed by the data forwarding load. Such death of nodes results coverage holes in the network very early. In most applications of WSNs, coverage preservation of the target area is a primary measure of quality of service. Considering the energy limitation of sensors, most of the clustering algorithms designed for WSNs focus on energy efficiency while ignoring the coverage requirement. In this paper, we propose a distributed clustering algorithm that uses fuzzy logic to establish a trade‐off between the energy efficiency and coverage requirement. This algorithm considers both energy and coverage parameters during cluster formation to maximize the coverage preservation of target area. Further, to deal with hot spot problem, it forms unequal sized clusters such that more CHs are available closer to BS to share the high data forwarding load. The performance of the proposed clustering algorithm is compared with some of the well‐known existing algorithms under different network scenarios. The simulation results validate the superiority of our algorithm in network lifetime, coverage preservation, and energy efficiency.  相似文献   

6.
Clustering provides an effective way to prolong the lifetime of wireless sensor networks.One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide the network.Another is the mode of inter-cluster communication.In this paper,an energy-balanced unequal clustering(EBUC)protocol is proposed and evaluated.By using the particle swarm optimization(PSO)algorithm,EBUC partitions all nodes into clusters of unequal size,in which the clusters closer to the base station have smaller size.The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the 'hot-spots' problem can be avoided.For inter-cluster communication,EBUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads.Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime.  相似文献   

7.
Energy conservation and fault tolerance are two critical issues in the deployment of wireless sensor networks (WSNs). Many cluster‐based fault‐tolerant routing protocols have been proposed for energy conservation and network lifetime maximization in WSNs. However, these protocols suffer from high frequency of re‐clustering as well as extra energy consumption to tolerate failures and consider only some very normal parameters to form clusters without any verification of the energy sufficiency for data routing. Therefore, this paper proposes a cluster‐based fault‐tolerant routing protocol referred as CFTR. This protocol allows higher energy nodes to become Cluster Heads (CHs) and operate multiple rounds to diminish the frequency of re‐clustering. Additionally, for the sake to get better energy efficiency and balancing, we introduce a cost function that considers during cluster formation energy cost from sensor node to CH, energy cost from CH to sink, and another significant parameter, namely, number of cluster members in previous round. Further, the proposed CFTR takes care of nodes, which have no CH in their communication range. Also, it introduces a routing algorithm in which the decision of next hop CH selection is based on a cost function conceived to select routes with sufficient energy for data transfer and distribute uniformly the overall data‐relaying load among the CHs. As well, a low‐overhead algorithm to tolerate the sudden failure of CHs is proposed. We perform extensive simulations on CFTR and compare their results with those of two recent existing protocols to demonstrate its superiority in terms of different metrics.  相似文献   

8.
This paper addresses the energy efficiency of data collection based on a concentric chain clustering topology for wireless sensor networks (WSNs). To conserve the energy dissipation of nodes spent in data routing, the paper attempts to take advantage of the two opportunities: (a) the impact of the relative positions of wireless nodes to the base station on the energy efficiency of the routing chain within each cluster; (b) the effect of the varying‐sized chains on the selection rule of cluster heads (CHs). To establish an energy‐efficient chain to connect all the nodes in a cluster, the paper proposes a principal vector projection approach, which takes into account both the position of each node and that of the base station, to determine the order to which a node can be linked into the chain in order to reduce the energy requirement of the chain. Since the CH selection rules in the concentric chains are mutually independent, solely based on their self‐cluster sizes, the multi‐hop path passing through all the CHs will consist of longer links and thus consume a significant fraction of the total energy. Thus, in order to suppress the effect of the unequal cluster sizes on decreasing the energy efficiency of the multi‐hop path of CHs, the paper offers an average‐cluster‐size‐based rule (ACSB) for each cluster in order to adapt the CH selection with both the number of active nodes in the current cluster and the average value of all cluster sizes. With these two proposed schemes, an adaptive concentric chain‐based routing algorithm is proposed which enables nodes to collaboratively reduce the energy dissipation incurred in gathering sensory data. By computer simulation, the results demonstrate that the proposed algorithm performs better than other similar protocols in terms of energy saved and lifetime increased capabilities for WSNs which deploy random sensor nodes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Wireless sensor network comprises billions of nodes that work collaboratively, gather data, and transmit to the sink. “Energy hole” or “hotspot” problem is a phenomenon in which nodes near to the sink die prematurely, which causes the network partition. This is because of the imbalance of the consumption of energy by the nodes in wireless sensor networks. This decreases the network's lifetime. Unequal clustering is a technique to cope up with this issue. In this paper, an algorithm, “fuzzy‐based unequal clustering algorithm,” is proposed to prolong the lifetime of the network. This protocol forms unequal clusters. This is to balance the energy consumption. Cluster head selection is done through fuzzy logic approach. Input variables are the distance to base station, residual energy, and density. Competition radius and rank are the two output fuzzy variables. Mamdani method is employed for fuzzy inference. The protocol is compared with well‐known algorithms, like low‐energy adaptive clustering hierarchy, energy‐aware unequal clustering fuzzy, multi‐objective fuzzy clustering algorithm, and fuzzy‐based unequal clustering under different network scenarios. In all the scenarios, the proposed protocol performs better. It extends the lifetime of the network as compared with its counterparts.  相似文献   

10.
11.
Energy conservation of the sensor nodes is the most important issue that has been studied extensively in the design of wireless sensor networks (WSNs). In many applications, the nodes closer to the sink are overburdened with huge traffic load as the data from the entire region are forwarded through them to reach the sink. As a result, their energy gets exhausted quickly and the network is partitioned. This is commonly known as hot spot problem. Moreover, sensor nodes are prone to failure due to several factors such as environmental hazards, battery exhaustion, hardware damage and so on. However, failure of cluster heads (CHs) in a two tire WSN is more perilous. Therefore, apart from energy efficiency, any clustering or routing algorithm has to cope with fault tolerance of CHs. In this paper, we address the hot spot problem and propose grid based clustering and routing algorithms, combinedly called GFTCRA (grid based fault tolerant clustering and routing algorithms) which takes care the failure of the CHs. The algorithms follow distributed approach. We also present a distributed run time management for all member sensor nodes of any cluster in case of failure of their CHs. The routing algorithm is also shown to tolerate the sudden failure of the CHs. The algorithms are tested through simulation with various scenarios of WSN and the simulation results show that the proposed method performs better than two other grid based algorithms in terms of network lifetime, energy consumption and number of dead sensor nodes.  相似文献   

12.
The technical growth in the field of the wireless sensor networks (WSNs) has resulted in the process of collecting and forwarding the massive data between the nodes, which was a major challenge to the WSNs as it is associated with greater energy loss and delay. This resulted in the establishment of a routing protocol for the optimal selection of the multipath to progress the routing in WSNs. This paper proposes an energy‐efficient routing in WSNs using the hybrid optimization algorithm, cat–salp swarm algorithm (C‐SSA), which chooses the optimal hops in progressing the routing. Initially, the cluster heads (CHs) are selected using the low‐energy adaptive clustering hierarchy (LEACH) protocol that minimizes the traffic in the network. The CHs are engaged in the multihop routing, and the selection of the optimal paths is based on the proposed hybrid optimization, which chooses the optimal hops based on the energy constraints, such as energy, delay, intercluster distance, intracluster distance, link lifetime, delay, and distance. The simulation results prove that the proposed routing protocol acquired minimal delay of 0.3165 with 50 nodes and two hops, maximal energy of 0.1521 with 50 nodes and three hops, maximal number of the alive nodes as 39 with 100 nodes and two hops, and average throughput of 0.9379 with 100 nodes and three hops.  相似文献   

13.
Ant colony optimization (ACO) and unequal clustering algorithms in wireless sensor networks (WSNs) prove their efficiency in protracting the network lifetime. However, the existing ACO and unequal clustering algorithms, respectively, do not consider jointly energy efficiency and reliability and focus only on some normal parameters to adjust the cluster radius, then neglecting the cluster head (CH) neighborhood information as it is wise to reduce the cluster radius when there are more neighbor CHs in order to balance the load and energy consumption. To resolve these problems, we propose a fault-tolerant distributed ACO-based routing (DACOR) protocol for mitigating the hot spot problem in fog-enabled WSN architecture. To improve the performance of the network, we propose a multiple fog nodes (FNs) and unequal clustering-based network model. The proposed model is energy efficient as it avoids repetitive clustering and affects CHs to FNs based on distance. Also, unlike the existing works which use either single FN/sink-based unequal clustering or multiple FNs/sinks to mitigate hot spot problem, we propose to distribute unequal clustering to multiple FNs (partitions). Additionally, we formulate a different rule to calculate the cluster radius based on significant parameters ensuring energy efficiency and balancing. To route data from source to destination, we devise a new probabilistic formula which considers not only energy efficiency but also reliability. The performance of the proposed DACOR protocol has been investigated under different scenarios through simulations. The results show that the proposed DACOR protocol outperforms the existing protocols in terms of various main metrics.  相似文献   

14.
Designing an energy efficient and durable wireless sensor networks (WSNs) is a key challenge as it personifies potential and reactive functionalities in harsh antagonistic environment at which wired system deployment is completely infeasible. Majority of the clustering mechanisms contributed to the literature concentrated on augmenting network lifetime and energy stability. However, energy consumption incurred by cluster heads (CHs) are high and thereby results in minimized network lifetime and frequent CHs selection. In this paper, a modified whale-dragonfly optimization algorithm and self-adaptive cuckoo search-based clustering strategy (MWIDOA-SACS) is proposed for sustaining energy stability and augment network lifetime. In specific, MWIDOA-SACS is included for exploiting the fitness values that aids in determining two optimal nodes that are selected as optimal CH and cluster router (CR) nodes in the network. In MWIDOA, the search conduct of dragon flies is completely updated through whale optimization algorithm (WOA) for preventing load balancing at CHs. It minimized the overhead of CH by adopting CHs and CR for collecting information from cluster members and transmitting the aggregated data from CHs to the base station (BS). It included self-adaptive cuckoo search (SACS) for achieving sink mobility using radius, energy stability, received signal strength, and throughput for achieving optimal data transmission process after partitioning the network into unequal clusters. Simulation experiments of the proposed MWIDOA-SACS confirmed better performance in terms of total residual energy by 21.28% and network lifetime by 26.32%, compared to the competitive CH selection strategies.  相似文献   

15.
The wireless body sensor network (WBSN) an extensive of WSN is in charge for the detection of patient’s health concerned data. This monitored health data are essential to be routed to the sink (base station) in an effective way by approaching the routing technique. Routing of tremendous sensed data to the base station minimizes the life time of the network due to heavy traffic occurrence. The major concern of this work is to increase the lifespan of the network which is considered as a serious problem in the wireless network functionalities. In order to recover this issue, we propose an optimal trust aware cluster based routing technique in WBSN. The human body enforced for the detection of health status is assembled with sensor nodes. In this paper, three novel schemes namely, improved evolutionary particle swarm optimization (IEPSO), fuzzy based trust inference model, and self-adaptive greedy buffer allocation and scheduling algorithm (SGBAS) are proposed for the secured transmission of data. The sensor nodes are gathered to form a cluster and from the cluster, it is necessary to select the cluster head (CH) for the effective transmission of data to nearby nodes without accumulation. The CH is chosen by considering IEPSO algorithm. For securable routing, we exhibit fuzzy based trust inference model to select the trusted path. Finally, to reduce traffic occurrence in the network, we introduce SGBAS algorithm. Experimental results demonstrate that our proposed method attains better results when compared with conventional clustering protocols and in terms of some distinctive QoS determinant parameters.  相似文献   

16.
A wireless sensor network (WSN) principally is composed of many sensor nodes and a single in situ base station (BS), which are randomly distributed in a given area of interest. These sensor nodes transmit their measurements to the BS over multihop wireless paths. In addition to collecting and processing the sensed data, the BS performs network management operations. Because of the importance of the BS to the WSN, it is the most attractive target of attacks for an adversary. Basically, the adversary opts to locate the BS and target it with denial‐of‐service attack to temporarily or indefinitely disrupt the WSN operation. The adversary can intercept the data packet transmissions and use traffic analysis techniques such as evidence theory to uncover the routing topology. To counter such an attack, this paper presents a novel technique for boosting the BS anonymity by grouping nodes into clusters and creating multiple mesh‐based routing topologies among the cluster heads (CHs). By applying the closed space‐filling curves such as the Moore curve, for forming a mesh, the CHs are offered a number of choices for disseminating aggregated data to the BS through inter‐CH paths. Then, the BS forwards the aggregated data as well so that it appears as one of the CHs. The simulation results confirm the effectiveness of the proposed technique in boosting the anonymity of the BS.  相似文献   

17.
A cluster-based model is preferable in wireless sensor network due to its ability to reduce energy consumption. However, managing the nodes inside the cluster in a dynamic environment is an open challenge. Selecting the cluster heads (CHs) is a cumbersome process that greatly affects the network performance. Although there are several studies that propose CH selection methods, most of them are not appropriate for a dynamic clustering environment. To avoid this problem, several methods were proposed based on intelligent algorithms such as fuzzy logic, genetic algorithm (GA), and neural networks. However, these algorithms work better within a single-hop clustering model framework, and the network lifetime constitutes a big issue in case of multi-hop clustering environments. This paper introduces a new CH selection method based on GA for both single-hop and the multi-hop cluster models. The proposed method is designed to meet the requirements of dynamic environments by electing the CH based on six main features, namely, (1) the remaining energy, (2) the consumed energy, (3) the number of nearby neighbors, (4) the energy aware distance, (5) the node vulnerability, and (6) the degree of mobility. We shall see how the corresponding results show that the proposed algorithm greatly extends the network lifetime.  相似文献   

18.
Clustering has been accepted as one of the most efficient techniques for conserving energy of wireless sensor networks (WSNs). However, in a two-tiered cluster based WSN, cluster heads (CHs) consume more energy due to extra overload for receiving data from their member sensor nodes, aggregating them and transmitting that data to the base station (BS). Therefore, proper selection of CHs and optimal formation of clusters play a crucial role to conserve the energy of sensor nodes for prolonging the lifetime of WSNs. In this paper, we propose an energy efficient CH selection and energy balanced cluster formation algorithms, which are based on novel chemical reaction optimization technique (nCRO), we jointly called these algorithms as novel CRO based energy efficient clustering algorithms (nCRO-ECA). These algorithms are developed with efficient schemes of molecular structure encoding and potential energy functions. For the energy efficiency, we consider various parameters such as intra-cluster distance, sink distance and residual energy of sensor nodes in the CH selection phase. In the cluster formation phase, we consider various distance and energy parameters. The algorithm is tested extensively on various scenarios of WSNs by varying number of sensor nodes and CHs. The results are compared with original CRO based algorithm, namely CRO-ECA and some existing algorithms to demonstrate the superiority of the proposed algorithm in terms of energy consumption, network lifetime, packets received by the BS and convergence rate.  相似文献   

19.
In a static wireless sensor network (WSN), sensors close to the base station (BS) run out of energy at a much faster rate than sensors in other parts of the network. This is because the sensor close to the BS always relays the data for other sensors, resulting in an unequal distribution of network residual energy. In this paper, we propose a scheme for enhancing the network lifetime using multiple mobile cluster heads (CHs) that can move in the WSN in a controllable manner. The CH controllably moves toward the energy‐rich sensors or the event area, offering the benefits of maintaining the remaining energy more evenly, or eliminating multihop transmission. Therefore, the proposed scheme increases the network lifetime. We theoretically analyze the energy consumption in our scheme and propose three heuristical mobility strategies. We further study the collaboration among CHs in order to maintain their connectivity to the BS to ensure the delay requirement for real‐time applications. Simulation shows that network lifetime is increased by upto 75% over existing approach by making CHs always move toward a stable equilibrium point. Our connectivity algorithm provides a best case improvement of 40% in transmission delays over existing schemes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.

Energy conservation is the main issue in wireless sensor networks. Many existing clustering protocols have been proposed to balance the energy consumption and maximize the battery lifetime of sensor nodes. However, these protocols suffer from the excessive overhead due to repetitive clustering resulting in high-energy consumption. In this paper, we propose energy-aware cluster-based routing protocol (ECRP) in which not only the cluster head (CH) role rotates based on energy around all cluster members until the end of network functioning to avoid frequent re-clustering, but also it can adapt the network topology change. Further, ECRP introduces a multi-hop routing algorithm so that the energy consumption is minimized and balanced. As well, a fault-tolerant mechanism is proposed to cope up with the failure of CHs and relay nodes. We perform extensive simulations on the proposed protocol using different network scenarios. The simulation results demonstrate the superiority of ECRP compared with recent and relevant existing protocols in terms of main performance metrics.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号