首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Various phospholipids may act as antioxidants or prooxidants. This study investigated the effects of three phospholipid classes and their fatty acid composition on antioxidant activity. Antioxidant properties of sphingomyelin, phosphatidylcholine, and phosphatidylethanolamine from salmon and menhaden oil were measured by oxidation induction time. An antioxidant activity index was determined in these systems with the Rancimat 617. Fatty acid profiles of the individual phospholipids and total oils were determined by gas-liquid chromatography before and after oxidation. The index was significantly (P<0.05) influenced by the headgroup and fatty acid composition of the phospholipid. Lipids with a choline headgroup had oxidation induction times greater than 60 h in the salmon oil system. The choline-containing phospholipid also offered better (P<0.05) protection from oxidation to the n-3 and total polyunsaturated fatty acids in salmon oil. Phospholipids containing more saturated fatty acids had longer oxidation induction times (>84 h) and higher antioxidant index (>9). Chainlength of the fatty acids may have contributed to the observed index, as phospholipids with longer chains (i.e., C18 and above) had longer oxidation induction times. Phospholipids tested in this study had little or no antioxidant activity in menhaden oil, nor did they offer protection to n-3 or total polyunsaturated fatty acids in this oil. These findings suggest that fatty acid profiles of individual oils may influence the antioxidant index of each phospholipid.  相似文献   

2.
ABCD1 is a gene responsible for X‐linked adrenoleukodystrophy (X‐ALD), and is critical for the transport of very long‐chain fatty acids (VLCFA) into peroxisomes and subsequent β‐oxidation. VLCFA‐containing lipids accumulate in X‐ALD patients, although the effect of ABCD1‐deficiency on each lipid species in the central nervous system has not been fully characterized. In this study, each phospholipid and lysophospholipid species in Abcd1‐deficient mice brains were profiled by liquid chromatography‐mass spectrometry. Among the phospholipid and lysophospholipid species that are significantly more enriched in Abcd1‐deficient mice brains, VLCFA were present in 75, 15, 5, 4, and 1 species of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, lysophosphatidylcholine, and lysophosphatidylethanolamine, respectively. Most VLCFA were incorporated at the sn‐1 position of phosphatidylcholine and phosphatidylethanolamine. Among the phospholipid species that are significantly less enriched in Abcd1‐deficient mice brains, odd‐numbered saturated or mono‐unsaturated fatty acyl moieties are contained in all phosphatidylcholine species. In addition, a number of phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine species contained highly unsaturated fatty acyl moieties. Intriguingly, 44:1 phosphatidylcholine with VLCFA was mainly distributed in the gray matter, such as the cortex, but not in the white matter in the cerebrum and cerebellum. These results show that ABCD1‐deficiency causes metabolic alternation of long‐chain fatty acids and VLCFA. Moreover, our results imply a molecular mechanism for the incorporation of saturated or monounsaturated VLCFA into the sn‐1 position of phospholipids, and also indicate that the distribution of phospholipids with VLCFA may correlate with the development of X‐ALD.  相似文献   

3.
The composition of seed phospholipids was determined in three species of xerophytic cucurbits,Cucurbita digitata Gray,C. foetidissima HBK andApodanthera undulata Gray. The phospholipid fractions were isolated using silicic acid chromatography and quantitated by colorimetric analysis. The component phospholipids were separated using thin layer chromatography. All three species contained phosphatidylcholine, phosphatidyl-ethanolamine and phosphatidylinositol as their major component phospholipids. Analysis by gas liquid chromatography of fatty acids in total phospholipid samples revealed linoleic acid as the major component and myristic acid in significant amounts in each species. Small amounts of conjugated unsaturated fatty acids in the phospholipids of each species were determined by ultraviolet spectrometry. Close similarities in the composition of specific phospholipids were found in all species. This is Paper No. 3908 of the Arizona Agricultural Experiment Station.  相似文献   

4.
Curcumin is a component in Curcuma longa L. with documented bioactive properties but has low bioavailability. To overcome this problem, curcumin nanoemulsions are prepared employing omega-3-rich phospholipids from krill oil as a surfactant and serve as curcumin carrying systems. The phospholipids are obtained through aqueous (LAD) and ethanolic (LED) degumming processes. The data obtained shows that LAD has a recovery of 70.7 ± 0.51% (w/w) phospholipids, being more efficient than LED with 45.97 ± 1.27% (w/w). Also, a higher content of omega-3 fatty acids is found in LAD with 36 ± 2.14% (w/w). From the critical micellar concentration (CMC) as an assessment of emulsifying capability, it is found that the krill oil (KO), LAD, and LED has a CMC in the range 0.666–0.700 g L−1. Two formulations with different surfactant levels are developed: experiment A with 9.5% and experiment B with 4.75% (w/w) of krill lecithin are obtained by aqueous degumming. In the formulation of nanoemulsions average particle sizes of 139 ± 2.5 and 142 ± 5.3 nm are produced for experiments A and B, respectively. These results indicate that krill lecithin is an omega-3 rich good surfactant which can be employed to encapsulate curcumin. Practical applications: An interest has emerged in the food industry to develop surfactants with nutritional value. Phospholipids are natural emulsifiers that are widely used to form nanoemulsions because of their elevated interfacial activity. Krill oil has been reported to be an important source of phospholipids and omega-3 fatty acids, which are mainly esterified to phospholipid moieties. Because of these properties, krill oil phospholipids could form micelles and function as carrier systems for bioactive compounds, thus increasing their permeability in the intestine. Consequently, the present work focused on obtaining a nanostructure using a natural surfactant that possesses fatty acids with nutritional value such as omega-3 fatty acids. This will provide an added value to the product obtained, as well as improve the bioavailability of non-polar bioactive compounds. The results obtained could justify the use of krill oil as a useful functional food additive.  相似文献   

5.
The phospholipid composition of five types of vegetable oil extracted from the nuts of plum (Prunus domestica L.), peach (Prunus persica L.), apricot (Prunus armeniaca L.), cherry (Prunus aviumL.), and morello-cherry (Prunus cerasus L.) was determined spectrophotometrically after fractionation and separation to individual components by means of two-directional thin-layer chromatography. The content of phospholipids in the oils varied from 0.4% to 1.1%, while in the corresponding nuts it varied from 0.2 to 0.5%. The major components in the phospholipid fraction were phosphatidylcholine (37.1–59.0%), phosphatidylinositol (13.8–31.6%) and phosphatidylethanolamine (12.9–19.5%). The fatty acid composition of the triacylglycerols and of the major phospholipids was determined by capillary gas chromatography. Larger quantities of saturated fatty acids, mainly palmitic and stearic acid, were identified in the phospholipids.  相似文献   

6.
The content of triacylglycerols (TAG) in krill oil is generally omitted from the labels of commercial supplements and unacknowledged in studies aimed at proving its health benefits. The present study demonstrates that TAG compounds, in addition to phospholipids and lysophospholipids, are an important lipid class in pure krill oil. The fatty acid composition of TAG molecules from krill oil and their distribution on the backbone of TAG structures were determined by gas chromatography and liquid chromatography tandem mass spectrometric, respectively. The content of omega 3 polyunsaturated fatty acids (n-3 PUFA) was similar to those reported in the literature for fish oil. It was estimated that 21 % of n-3 PUFA were at the sn-2 position of TAG structures. To our knowledge, this is the first determination and structural characterization of TAG in pure krill oil supplements.  相似文献   

7.
J. E. Kinsella 《Lipids》1972,7(3):165-170
The microsomes isolated from lactating bovine mammary tissue contained 4.3 mg lipid per milligram nitrogen. Phospholipids comprised 83% of the lipids. The neutral lipids were composed of triglycerides (20–30%), diglycerides (5–10%), free fatty acids (15–30%, cholesterol (35–40% and cholesterol esters (10–12%, respectively. Phosphatidylcholine was the predominant phospholipid component (>50%), and the remainder consisted of phosphatidylethanolamine (21–13%), phosphatidylserine (4–6%), phosphatidylinositol (8%), sphingomyelin (9%) and lysophosphatidylcholine (2%) respectively. The composition of the microsomal phospholipids was similar to that of isolated mammary cells and tissue homogenates but quite different from milk and fat globule membrane phospholipids. The triglycerides contained short chain fatty acids but their relative concentrations were lower than in milk triglycerides. The various lipid fractions had a variable proportion of saturated fatty acids, i.e., triglycerides (47.7%), diglycerides (86.7%), free fatty acids (70.6%), phosphatidylcholine (50.6%), phosphatidylethanolamine (50.8%), phosphatidylserine (35.3%), phosphatidylinositol (40.5%) and sphingomyelin (82.3%), respectively. The molecular distribution of fatty acids in the microsomal triglycerides and phosphatidylcholine was similar to that occurring in milk, i.e., the short chain and unsaturated fatty acids were concentrated in the primary positions (sn1 andsn3) of the triglycerides, and the unsaturated acids were preferentially located in positionsn2 of the phosphatidylcholine. The compositional data indicate that mammary microsomes are not the direct source of the phospholipids of the milk fat globule.  相似文献   

8.
Previous studies in our laboratory have shown that marine oils, with high levels of eicosapentaenoic (EPA, 20∶5n−3) and docosahexaenoic acids (DHA, 22∶6n−3), inhibit the growth of CT-26, a murine colon carcinoma cell line, when implanted into the colons of male BALB/c mice. Anin vitro model was developed to study the incorporation of polyunsaturated fatty acids (PUFA) into CT-26 cells in culture. PUFA-induced changes in the phospholipid fatty acid composition and the affinity with which different fatty acids enter the various phospholipid species and subspecies were examined. We found that supplementation of cultured CT-26 cells with either 50 μM linoleic acid (LIN, 18∶2n−6), arachidonic acid (AA, 20∶4n−6), EPA, or DHA significantly alters the fatty acid composition of CT-26 cells. Incorporation of these fatty acids resulted in decreased levels of monounsaturated fatty acids, while EPA and DHA also resulted in lower levels of AA. While significant elongation of both AA and EPA occurred, LIN remained relatively unmodified. Incorporation of radiolabeled fatty acids into different phospholipid species varied significantly. LIN was incorporated predominantly into phosphatidylcholine and had a much lower affinity for the ethanolamine phospholipids. DHA had a higher affinity for plasmenylethanolamine (1-O-alk-1′-enyl-2-acyl-sn-glycero-3-phosphoethanolamine) than the other fatty acids, while EPA had the highest affinity for phosphatidylethanol-amine (1,2-diacyl-sn-glycero-3-phosphoethanolamine). These results demonstrate that,in vitro, significant differences are seen between the various PUFA in CT-26 cells with respect to metabolism and distribution, and these may help to explain differences observed with respect to their effects on tumor growth and metastasis in the transplantable model.  相似文献   

9.
Six oils of marine, algal, and microbial origin were analyzed for stereospecific distribution of component fatty acids. The general procedure involved preparation ofsn-1,2-(2,3)-diacylglycerols by partial deacylation with ethylmagnesium bromide or pancreatic lipase, separation of X-1,3- andsn-1,2(2,3)-diacylglycerols by borate thin-layer chromatography, resolution of thesn-1,2- andsn-2,3-enantiomers by chiral phase high-performance liquid chromatography following preparation of dinitrophenylurethane derivatives, and determination of the fatty acid composition by gas chromatography. Unexpected complications arose during a stereospecific analysis of triacylglycerols containing over 33% of either 20∶4 or 22∶6 fatty acids. Thesn-1,2(2,3)-diacylglycerols made up of two long-chain polyunsaturated acids migrated with the X-1,3-diacylglycerols and required separate chiral phase resolution. Furthermore, the enzymatic method yieldedsn-1,2(2,3)-diacylglycerols, overrepresenting the polyenoic species due to their relative resistance to lipolysis, but prolonged digestion yielded correct composition for the 2-monoacylglycerols. The final positional distribution of the fatty acids was established by pooling and normalizing the data from subfractions obtained by norman- and chiral-phase separation of diacylglycerols. The molecular species of X-1,3-,sn-1,2- andsn-2,3-diacylglycerol dinitrophenylurethanes were identified by chiral-phase liquid chromatography/mass spectrometry with electrospray ionization, which demonstrated a preferential association of the paired long-chain acids with thesn-1,2- andsn-2,3-diacylglycerol isomers.  相似文献   

10.
Semecarpus anacardium (family Anacardiaceae) has many applications in the Ayurvedic and Siddha systems of medicine in India. Detailed knowledge on the composition of S. anacardium oil, in consideration of potential utilization, is of major importance. In this investigation, column chromatography, gas chromatography, thin layer chromatography and liquid chromatography techniques were performed to analyze lipid classes, fatty acids and fat-soluble bioactives of S. anacardium crude seed oil. The amount of neutral lipids in the crude seed oil was the highest, followed by glycolipids and phospholipids, respectively. Linoleic followed by palmitic and oleic were the major fatty acids. The ratio of unsaturated fatty acids to saturated fatty acids was higher in neutral lipid classes than in the polar lipids. The main sterol compounds were β-sitosterol, campesterol and stigmasterol. δ-Tocopherol followed by β-tocopherol were the main tocopherols. When S. anacardium seed oil and extra virgin olive oil were compared for their radical scavenging activity toward 1,1-diphenyl-2-picrylhydrazyl radical and galvinoxyl radical (by electron spin resonance spectrometry), S. anacardium seed oil exhibited a stronger RSA.  相似文献   

11.
Gravimetric normal-phase silver ion–silica gel column chromatography has been used for the novel application of purification of GLA-containing triglycerides (GLA-TGs) from evening primrose seed oil (EPO). Gradient elution with increasing polarity enabled separation of valuable TG species containing γ-linolenic acid (GLA, 18:3n-6). Enzymatic hydrolysis revealed the distribution of fatty acids (FAs) in the isolated TG species, with GLA in the sn-2 position in different percentages, depending on the degree of unsaturation. A novelty of this work was the successful use of the procedure to improve the purification of raw GLA species from EPO up to preparative scale, thus enabling use of this methodology for industrial purposes.  相似文献   

12.
The steryl ester and phospholipid fractions of the marine spongeAgelas conifera were isolated and analyzed. The fatty acyl components of the steryl ester and phospholipid fractions as determined by gas chromatography and gas chromatography/mass spectrometry were very similar and consisted of 56.8 and 62.7% of C14−C20 acids (normal; branched, especiallyiso andanteiso; and monounsaturated, particularly Δ9 and Δ11 acids) and of 43.1 and 35.5% of C24−C26 acids (Δ5,9 diunsaturated acids), respectively. The major constituent fatty acids detected were 13-methyltetradecanoic,n-hexadecanoic, 10-methylhexadecanoic, 11-octadecenoic, 12-methyloctadecanoic, 5,9-pentacosadienoic and 5,9-hexacosadienoic acids. The phospholipids isolated were identified as phosphatidylcholine (37%), phosphatidylserine (34%), phosphatidylethanolamine (16%) and phosphatidylinositol (11%). The distribution of fatty acids within the phospholipid classes was also determined.  相似文献   

13.
The positional distribution of fatty acids (FA) of triacylglycerols (TAG) and major phospholipids (PL) prepared from four cultivars of peas (Pisum sativum L.) were investigated as well as their tocopherol contents. The lipids extracted from these peas were separated by thin-layer chromatography (TLC) into seven fractions. The major lipid components were PL (52.2–61.3%) and TAG (31.2–40.3%), while the other components were also present in minor proportions (5.6–9.2%). γ-Tocopherol was present in the highest concentration, and α- and δ-tocopherols were very small amounts. The main PL components isolated from the four cultivars were phosphatidylcholine (42.3–49.2%), followed by phosphatidylinositol (23.3–25.2%) and then phosphatidylethanolamine (17.7–20.5%). Small but significant differences (P < 0.05) in FA distribution existed when different pea cultivars were determined. However, the principal characteristics of the FA distribution in the TAG and the three PL were evident among the four cultivars; unsaturated FA were predominantly located in the sn-2 position, and saturated FA primary occupied the sn-1 or sn-3 position in the oils of the peas. These results suggest that the regional distribution of tocopherols and fatty acids in peas is not dependent on the climatic conditions and the soil characteristics of the cultivation areas during the growing season.  相似文献   

14.
The concentrations and pro-oxidative effects of free fatty acids in commercial krill oil are not well defined. We now report that krill oil free fatty acids account for 2–13% of total lipids in commercial krill oil (n = 8) that these compounds are enriched in eicosapentaenoic acid (+7.1%) and docosahexaenoic acid (+6.3%) relative to whole oils; and that this composition make them highly pro-oxidizing in marine triacylglycerol oils, but not in krill oil, which derives oxidative stability from both its phospholipids, and neutral lipids (the latter because of astaxanthin). Specific fatty acid esterification patterns showed that krill oil free fatty acids predominantly (88–93%) originated from phospholipids, mainly from the sn-2 position, which was eight-fold more hydrolyzed than the sn-1 position. Lipolysis was not ongoing in stored oils. Adding small amounts of krill oil (1–5%) to marine triacylglycerol oils significantly increased their oxidative stability and also their resistance to free fatty acid-mediated pro-oxidative effects.  相似文献   

15.
A mixture of beef tallow and rapeseed oil (1:1, wt/wt) was interesterified using sodium methoxide or immobilized lipases from Rhizomucor miehei (Lipozyme IM) and Candida antarctica (Novozym 435) as catalysts. Chemical interesterifications were carried out at 60 and 90 °C for 0.5 and 1.5 h using 0.4, 0.6 and 1.0 wt‐% CH3ONa. Enzymatic interesterifications were carried out at 60 °C for 8 h with Lipozyme IM or at 80 °C for 4 h with Novozym 435. The biocatalyst doses were kept constant (8 wt‐%), but the water content was varied from 2 to 10 wt‐%. The starting mixture and the interesterified products were separated by column chromatography into a pure triacylglycerol fraction and a nontriacylglycerol fraction, which contained free fatty acids, mono‐, and diacylglycerols. It was found that the concentration of free fatty acids and partial acylglycerols increased after interesterification. The slip melting points and solid fat contents of the triacylglycerol fractions isolated from interesterified fats were lower compared with the nonesterified blends. The sn‐2 and sn‐1,3 distribution of fatty acids in the TAG fractions before and after interesterification were determined. These distributions were random after chemical interesterification and near random when Novozym 435 was used. When Lipozyme IM was used, the fatty acid composition at the sn‐2 position remained practically unchanged, compared with the starting blend. The interesterified fats and isolated triacylglycerols had reduced oxidative stabilities, as assessed by Rancimat induction times. Addition of 0.02% BHA and BHT to the interesterified fats improved their stabilities.  相似文献   

16.
Destaillats F  Arul J  Simon JE  Wolff RL  Angers P 《Lipids》2002,37(1):111-116
Dibutyrate derivatives of monoacylglycerols of oleic, petroselinic, and cis-vaccenic acids were prepared by diesterification of monoacylglycerols with n-butyryl chloride. The resulting triacylglycerols were analyzed by gas chromatography (GC) with a 65% phenyl methyl silicone capillary column and separated on the basis of both fatty acid composition and regiospecific position. The petroselinic acid derivatives eluted first, followed sequentially by the oleic and cis-vaccenic acid derivatives, with the sn−2 positional isomer eluting before the sn−1(3) isomer in each case. Separation of the peaks was almost baseline between petroselinic and oleic acids as well as between oleic and cis-vaccenic acids. To assess the accuracy of the method, mixtures of triolein, tripetroselinin, and tri-cis-vaccenin in various known proportions were partially deacylated with the use of ethyl magnesium bromide and derivatized and analyzed as above. The results showed that this method compares favorably to the existing methods for analysis of oleic, petroselinic, and cis-vaccenic fatty acids by GC with respect to peak separation and accuracy, and it also provides information on the regiospecific distribution of the fatty acids. The method was applied to basil (Ocimum basilicum) and coriander (Coriandrum sativum) seed oils. cis-Vaccenic, oleic, and linoleic acids were mainly distributed at the sn−2 position in basil seed oil, and higher proportions of linolenic, palmitic, and stearic acids were distributed at the sn−1(3) position than at the sn−2 position. In coriander seed oil, petroselinic acid was mainly distributed at the sn−1(3) position, and both oleic and linoleic acids were mostly located at the sn−2 position, whereas palmitic, stearic, and cis-vaccenic acids were located only at the sn−1(3) position.  相似文献   

17.
The detailed analysis of krill oil is of importance to be able to differentiate other oils, identify adulterated products, and provide the highest quality associated with its beneficial health effects. The objective of this study was to demonstrate the usefulness of the combination of 31P, 1H and 13C nuclear magnetic resonance (NMR) spectroscopies to characterize the krill oil profile. It was found that in contrast to fish oil, where eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) fatty acids are found in triacylglycerol, krill oil is characterized by a more asymmetric fatty acid distribution with a higher polyunsaturated fatty acids PUFA content in the sn‐2 position of phospholipids and lower amounts in triacylglycerol. Besides the typical asymmetric fatty acid composition, several other markers were investigated for krill oil origin test. The validation of the 31P NMR spectroscopic method regarding major phospholipid species was performed according to the Good Laboratory Practice (GLP) and International Council for Harmonisation (ICH) guidelines. The method was characterized by high sensitivity, accuracy, and reproducibility. Interlaboratory testing showed satisfactory robustness regardless of the type of NMR equipment used by different laboratories. High‐resolution NMR spectroscopy has proven to be a convenient and exact method for providing a characteristic fingerprint of krill oil. By this technique, clear distinctions to other oils can be made through qualitative and quantitative analysis of krill oil.  相似文献   

18.
Jen-sie Tou 《Lipids》1987,22(5):333-337
The present study showed that platelet-activating factor (1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine, PAF), but not lysoPAF (1-O-hexadecyl-sn-glycero-3-phosphocholine) rapidly (within 15 sec) stimulated the incorporation of both [1-14C]arachidonate and [1-14C]docosahexaenoate into phosphatidylinositol (PI) and phosphatidylcholine (PC) in human neutrophils. Concomitantly, it inhibited the formation of labeled phosphatidic acid from both fatty acids. The magnitude of stimulation (percentage of control) was greater in PI than in PC for the incorporation of arachidonate and vice versa for the incorporation of docosahexaenoate. It reached a maximum at 10−7 M and started to decline at 10−6 M. Extracellular Ca2+ was not essential for the action of PAF on phospholipid acylation. The distribution of labeled arachidonate in the molecular species of PC was not altered by PAF after 1 min incubation, suggesting that the increased formation of arachidonyl-PC during the early stage of neutrophil-PAF interaction was not originated from the added PAF. No measurable changes in the mass of each phospholipid were detected in neutrophils challenged by PAF from 15 sec to 2 min. The data suggest that the increased incorporated of extracellular fatty acids into PI and PC elicited by PAF may be secondary to increased deacylation of these phospholipids, and the magnitude of stimulation reflects the specificity of acyltransferase catalyzing the acylation of lysoPI and lysoPC by fatty acyl-CoA.  相似文献   

19.
Gillis TE  Ballantyne JS 《Lipids》1999,34(1):53-57
The phospholipid and fatty acid composition of gill mitochondria membranes from two Arctic marine bivalve mollusks, Mya truncata and Serripes groenlandicus, were examined. These animals were collected from the Arctic Ocean, where waters remain below 0°C throughout the year. In both species, the primary membrane phospholipids were phosphatidylcholine, and phosphatidylethanolamine. Although a low ratio of bilayer-stabilizing phospholipids to bilayer-destabilizing phospholipids is frequently associated with cold acclimation in temperate species, this ratio is very different between the two species. The monounsaturated fatty acid 20∶1 was abundant in the membranes of both Arctic species equaling 13.0% of the fatty acid composition in S. groenlandicus, and 17.7% in M. truncata. Polyunsaturated fatty acids were relatively low in the Arctic species, equaling 35.9% of total membrane fatty acids compared to that of temperate zone mollusks. It is suggested that monoenes are common in the tissues of Arctic species since they play a role in maintaining membrane function at subzero temperatures.  相似文献   

20.
The phospholipid and fatty acid composition of three Bulgarian nut oils were investigated. Phospholipids were separated by Folch′s method and two-directional thin-layer chromatography. Their content was determined spectrophotometrically. Phospholipids were present at levels of 0.8% in almond oil, 2.8% in hazelnut oil, and 0.9% in walnut oil. Phosphatidylcholine (18—50%), phosphatidylinositol (18—45%), and phosphatidylethanolamine (8—16%) were found to be the major components. Small amounts of phosphatidylserine, phosphatidic acids, phosphatidylglycerols, lysophosphatidylcholine, and lysophosphatidylethanolamine were also detected. The fatty acid composition of glyceride oils and of the four main phospholipids, namely phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidic acids was identified by capillary gas chromatography of their methyl esters. The predominant fatty acid present in almond and hazelnut oils was linoleic (83.2% and 80.8%, respectively). Oleic acid (18.7%), linoleic acid (48.5%), and linolenic acid (15.8%) were the major components in walnut oil. Higher quantities of saturated fatty acids (27.8—81.2%) were found to be in the phospholipids than in the corresponding oils (9.5—16.7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号