首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics and mechanism of slow crack growth in fatigue and creep of high density polyethylene were studied. The relationship between fatigue and creep was examined by varying the R-ratio (the minimum/maximum loads in the fatigue loading cycle) in the tensile mode such that loading ranged from mainly dynamic (R = 0.1) to static (R = 1.0, creep test). The stepwise crack propagation mechanism characteristic of long-term failures in polyethylene was observed for all loading conditions studied. Fatigue fracture kinetics allowed for extrapolation to the case of creep failure, which suggested that short-term fatigue testing can be used to predict long-term creep fracture properties. The size of the craze damage zone ahead of the arrested crack tip was controlled only by the mean stress, however the lifetime of the zone was determined by both the maximum stress and the mean stress. Crack growth rate was related to the maximum stress and the mean stress by a power law relationship, which described crack growth over the entire range of loading conditions studied.  相似文献   

2.
采用不同应力比条件下的16MnR钢紧凑拉伸试样,设计了三种有限元分析模型,即不考虑加载历史效应的静态裂纹扩展模型,同时考虑加载历史和裂纹闭合的动态裂纹扩展模型以及仅考虑加载历史的伪动态裂纹扩展模型,对疲劳裂纹闭合过程、裂纹尖端的应力-应变迟滞环、疲劳损伤和裂纹扩展速率进行了数值模拟与分析,进而着重探讨了加载历史和裂纹闭合影响疲劳裂纹扩展行为的交互作用机制。结果表明:对于同类分析模型,应力比越大越不容易产生裂纹闭合;而在应力比相同的情况下,加载历史引起的残余压应力对裂纹闭合有明显的促进作用。裂纹闭合效应阻碍了平均应力的松弛,减小了裂纹尖端附近的应力-应变场强度、疲劳损伤和裂纹扩展速率,而加载历史引起的残余压应力则加快了平均应力的松弛和抑制了棘轮效应。与实验结果比较发现,只有同时考虑了裂纹闭合效应和加载历史影响的动态裂纹扩展模型,才能对疲劳裂纹扩展行为进行准确、定量的模拟。  相似文献   

3.
The effects of frequency and R-ratio (the ratio of minimum to maximum stress in the fatigue loading cycle) on the kinetics of step-wise crack propagation in fatigue and creep of high density polyethylene (HDPE) was characterized. Stepwise crack growth was observed over the entire range of frequency and R-ratio examined. A model relating crack growth rate to stress intensity factor parameters and applied strain rate was proposed by considering the total crack growth rate to consist of contributions from creep and fatigue loading components. The creep contribution in a fatigue test was calculated from the sinusoidal loading curve and the known dependence of creep crack growth on stress intensity factor in polyethylene. At a very low frequency of 0.01 Hz, fatigue crack growth rate was found to be completely controlled by creep processes. Comparison of the frequency and R-ratio tests revealed that the fatigue loading component depended on strain rate. Therefore, crack growth rate could be modeled with a creep contribution that depended only on the stress intensity factor parameters and a fatigue contribution that depended on strain rate.  相似文献   

4.
A comparison of some engineering properties of 7050-T73651, 7010-T7651 and 7010-T73651 plate has been made. The properties investigated were strength, stress corrosion resistance, fracture toughness and fatigue crack propagation resistance under flight simulation loading.

It was found that both 7050 and 7010 are high strength deep hardenable alloys with only minor differences in crack tolerance properties. The fracture toughness of both alloys is equivalent, while 7050 possesses slightly better resistances to stress corrosion cracking and fatigue crack propagation under flight simulation loading.  相似文献   


5.
In the conceptual framework of fracture mechanics analyses, the study of cracked wires axially loaded has the highest interest since numerous structural elements (e.g. wires, cables, cordons or tendons) work under such a type of loading during their service lives. So, a method that allows the determination of stress states at the crack front should be welcome as a useful way for ensuring the structural integrity of those components for different environmental conditions (air, stress corrosion cracking, hydrogen embrittlement,…). To fill this gap, an engineering estimation of the critical stress intensity factor (SIF) is proposed in this paper for eutectoid steel cracked wires under axial loading. The critical SIF is calculated by considering, apart from the fatigue precrack, the subcritical crack propagation before final fracture. Such a subcritical crack propagation is the process zone (by micro-void coalescence MVC) in the case of fracture in air, the subcritical cracking by localized anodic dissolution (LAD) in stress corrosion cracking (SCC) and the tearing topography surface (TTS) in hydrogen assisted cracking (HAC). In addition, different SIF solutions are used in the analysis so as to have a more complete picture of the different phenomena leading to failure and to provide the designer with sound scientific tools. This method allows the engineer to design in the framework of structural integrity and damage tolerance.  相似文献   

6.
Fatigue crack propagation tests were conducted under conditions of equibiaxial, uniaxial and shear loading by using a cruciform specimen in a servo hydraulic testing machine. The effect of non-singular stress cycling on the fatigue crack propagation rate was examined based on the observation of crack opening behavior. The crack propagation rate was significantly influenced by the non-singular stress parallel to the crack when it was correlated to the stress intensity range. The crack closure behavior was greatly affected by the non-singular stress. The crack propagation rate was uniquely correlated to the effective range of the stress intensity factor except for the case of completely reversed shear loading where significant plasticity was detected. The crack opening displacement range was concluded to be a parameter controlling the crack propagation rate for all the stress conditions examined in the present experiments. Some discussion is made on the effect of material anisotropy on fatigue crack propagation in a biaxial stress field.  相似文献   

7.
The present study was undertaken to determine whether the correlation between fatigue and creep established for polyethylene in air could be extended to environmental liquids. Fatigue and creep tests under various conditions of stress, R-ratio (defined as the ratio of minimum to maximum load in the fatigue loading cycle), and frequency were performed in air and in Igepal solutions. The load–displacement curves indicated that stepwise fatigue crack growth in air was preserved in Igepal solutions at 50 °C, the temperature specified for the ASTM standard. In air, systematically decreasing the dynamic component of fatigue loading by increasing the R-ratio to R = 1 (creep) steadily increased the lifetime. In contrast, the lifetime in Igepal was affected to a much smaller extent. The fatigue to creep correlation in air was previously established primarily for tests at 21 °C. Before testing the correlation in Igepal, it was necessary to establish the correlation in air at 50 °C. Microscopic methods were used to verify stepwise crack growth by the sequential formation and breakdown of a craze zone, and to confirm the fatigue to creep correlation. The crack growth rate under various loading conditions was related to the maximum stress and R-ratio by a power law relationship. Alternatively, a strain rate approach, which considered a creep contribution and a fatigue acceleration factor that depended only on strain rate, reliably correlated fatigue and creep in air at 50 °C under most loading conditions of stress, R-ratio and frequency. The exceptions were fatigue loading under conditions of R = 0.1 and frequency less than 1 Hz. It was speculated that compression and bending of highly extended craze fibrils were responsible for unexpectedly high crack speeds.  相似文献   

8.
This paper presents a delayed-fracture model for transverse cracking in CFRP cross-ply laminates under static fatigue loading. First, a delayed-fracture model for a crack in a brittle material was established on the basis of the slow crack growth (SCG) concept in conjunction with a probabilistic fracture model using the three-parameter Weibull distribution. Second, the above probabilistic SCG model was applied to transverse cracking in cross-ply laminates under static fatigue loading. The stress and the length of the unit element in the transverse layers were calculated with the aid of a shear-lag analysis, taking the residual stress into account. The transverse crack density was expressed as a function of applied stress and time with the parameters in the Paris law and the Weibull distribution function specified, in addition to the mechanical and geometrical properties. Unknown parameters were determined from experiment data gathered in static tensile and static fatigue tests. The reproduced transverse crack density at various applied loads agreed well with the experiment results.  相似文献   

9.
Abstract Crack propagation rates have been measured in two aluminium alloys under cyclic and static loading, in air, and in salt solution. On the basis of these results, a model is proposed, whereby corrosion fatigue crack propagation may be interpreted in terms of fatigue and static stress corrosion characteristics. Two interacting processes are operative; one is "stress assisted dissolution", which tends to inhibit mechanical failure by crack blunting and microbranching. The other is "environment assisted fracture" which occurs too rapidly for dissolution to occur. One or other of these processes is always observed to be dominant. This proposal is discussed in relation to other recent models for corrosion fatigue cracking. The effects of frequency, waveform and mean stress variations are also considered.  相似文献   

10.
Static and dynamic fatigue tests have been carried out at 23°C on a single grade of high-density polyethylene, using 6 mm thick, centrally cracked plate specimens. Crack growth rates were determined over a range of frequencies and stress ratios. Analysis of the dynamic data shows that crack growth is related to time under load rather than to number of fatigue cycles. Comparison with static fatigue results shows that unloading accelerates crack propagation, especially if the crack is compressed; these observations are interpreted in terms of crack tip sharpness.  相似文献   

11.
Fatigue crack propagation studies were performed in medium density polyethylene pipe to elucidate the damage mechanism associated with pipe failure. Past pipe testing methods required up to several years to produce failures which mimicked those observed in the field. However, by fatiguing a specially designed test specimen, brittle failure, resembling that observed under service conditions, was produced in only three days. It was determined that the method of loading and the crack plane orientation greatly affect the degree and extent of brittle crack propagation. In some specimen geometries, the initial brittle fracture may undergo a transition to a more ductile failure mode. The damage which precedes the crack tip during brittle cracking is a root craze and two smaller side crazes; these crazes are primarily composed of yielded membranes which are oriented normal to the crack propagation direction, rather than being composed of fibrils. The number and length of these crazes was shown to be dependent on the chosen test geometry.  相似文献   

12.
In concrete pavements, fatigue is one of the major causes of distress. Repeated loads result in the formation of cracks. The propagation of these cracks cause internal progressive damage within the structure, which ultimately leads to failure of the pavement due to fatigue. This paper presents a theoretical investigation of crack propagation within concrete pavement and its fatigue characteristics under cyclic loading. A numerical fatigue performance model has been developed for this purpose. The model is based on fictitious crack approach for the propagation of cracks and stress degradation approach for estimating the bridging stress under cyclic loading. Using the numerical model, a parametric study has been performed for a typical concrete pavement to evaluate its fatigue characteristics for different foundation strengths. The method can be used for prediction of crack propagation in concrete pavement under cyclic loading and gives an estimate of the incremental damage or the entire crack history of the pavement.  相似文献   

13.
Abstract

Polycrystalline nickel based superalloys are prone to grain boundary attack by atmospheric oxygen either in the form of time dependent intergranular cracking during dwell time within a low cycle fatigue loading spectrum, known as hold time cracking, or in the form of intercrystalline oxidation at higher temperatures. In the case of hold time cracking of IN718 it has been shown that the crack propagation velocity is determined by local microstructure and environmental conditions, reaching values up to 10 μm s?1 under four-point bending conditions at 650°C in air. The governing mechanism for this kind of time dependent quasi-brittle intergranular failure has been recognised to be 'dynamic embrittlement', i.e. diffusion of the embrittling element into the elastic stress field ahead of the crack tip, followed by stepwise decohesion. In a very similar way to intercrystalline oxidation, this damage mechanism seems to depend on the local microstructure. Assuming that oxygen grain boundary diffusivity is particularly slow for special coincident site lattice (CSL) grain boundaries, bending and oxidation experiments were carried out using specimens that underwent successive steps of deformation and annealling, i.e. grain boundary engineering. It has been shown that an increase in the fraction of special CSL grain boundaries yields a higher resistance to both intercrystalline oxidation and hold time cracking by dynamic embrittlement.  相似文献   

14.
卜一之  金通  李俊  张清华 《工程力学》2019,36(6):211-218
纵肋与横隔板交叉构造细节是正交异性钢桥面板最易发生疲劳开裂的构造细节,通过建立有限元数值模型,采用断裂力学方法,研究栓接角钢加固方式对该处疲劳易损细节穿透型裂纹的加固效果。基于疲劳试验足尺节段模型相对应有限元模型,建立了纵肋与横隔板焊接处穿透型疲劳裂纹模型,针对栓接角钢和纵肋外侧栓接钢板两种加固技术的加固效果进行评估。研究结果表明:钢桥面板纵肋与横隔板交叉构造细节的疲劳裂纹扩展至一定长度后将发展成穿透型裂纹,裂纹面受力复杂,纵肋腹板内外侧疲劳裂纹扩展特性表现的不一样,但是随着裂纹扩展的逐步进行,裂纹尖端的开裂模式均以复合型开裂为主;栓接角钢加固方式主要抑制纵肋与横隔板交叉构造细节易损部位疲劳裂纹的I型开裂,因此能很好地抑制短裂纹的扩展,但对于该细节处以复合形式扩展的穿透型疲劳裂纹的加固效果并不显著;在纵肋外侧栓接半U形钢板的加固方法能有效改善穿透型疲劳裂纹的等效应力强度因子,并且加固之后均保持在裂纹扩展阈值以下,表明该加固方式对穿透型疲劳裂纹有良好加固效果。  相似文献   

15.
The fatigue crack propagation analyses of padded plates are conducted to predict the crack growth behaviour under various loading conditions. The fatigue life of a padded plate with a single edge crack originating from the weld toe is calculated using the weight function approach. The fatigue strength of padded plates with different pad thickness under remote loading conditions was investigated and compared to the T-plate joint. The improvement of the fatigue strength of the pad design is verified.
  The thickness effect of the padded plate was investigated using the fracture mechanics approach. The geometrically similar model pairs with different initial crack sizes were investigated under remote loading conditions. It was shown that the thickness effect depends on both stress concentration and initial crack size.  相似文献   

16.
Cyclic crack growth resistance tests of AMg6N alloy under loading at frequencies of 20 to 10 kHz have demonstrated that the rate of fatigue crack propagation decreases with increasing frequency and the threshold stress intensity factors increase exponentially with the frequency of strain cycling. Fractographic observations of fracture surfaces of the specimens have revealed that an increase in the loading frequency is accompanied by a decrease in the fatigue striation spacing and in the size of the striation microzones by intnsifying the processes of secondary cracking and the formation of fretting products. This leads to a decrease in the rate of fatigue crack propagation and an increase in the threshold values of the stress intensity factors. An increase in the asymmetry of the loading cycles reduces the contribution of delamination and the formation of fretting products to the process of fracture of the alloy and results in a smaller fraction of the striation relief and in an earlier occurrence of the elements of quasistatic fracture by dimples, which is the cause of the reduction in characteristics of the cyclic crack growth resistance under asymmetrical loading. Institute for Problems of Strength, National Academy of Sciences of Ukraine, Kiev, Ukraine. Translated from Problemy Prochnosti, No. 2, pp. 94–105, March–April, 1999.  相似文献   

17.
Natural rubber is known to have excellent fatigue properties. Fatigue crack propagation studies show that, under uniaxial tension loading, fatigue crack growth resistance increases with the loading ratio, even if the peak stress increases. Studies dealing with crack initiation confirm this trend. If strain induced crystallization is believed to play a major role in this reinforcement process, it is not clear yet by which mechanism this reinforcement takes place. Using SEM investigation, it is shown here that the reinforcement process is associated with strong crack branching in the crack tip region. From experimental results it is shown that under particular reinforcing loading condition a cyclic strain hardening process can be observed on the natural rubber which is able to overcome classically observed softening effects. A cumulative strain induced crystallization process is proposed to explain the stress ratio effect on fatigue crack initiation and propagation properties of natural rubber.  相似文献   

18.
Abstract— Corrosion fatigue crack growth rates in high strength steel are often increased when a large cathodic polarization is applied. The corrosion fatigue mechanism in this case is generally considered to be due to hydrogen embrittlement. In the present study the crack growth process was carefully monitored by taking replicas from initially smooth specimens of a high strength steel under fully reversed push-pull loading while: (1) exposed to laboratory air, (2) immersed in a 0.6 M sodium chloride (NaCl) solution at open circuit potential (OCP) and (3) with an applied cathodic potential of —1250 mV (SCE). It is shown that the effect of cathodic polarization is dependent on the applied stress level and the nature of the cracking process, which in turn, is related to the sue of the crack. For stress levels at or below the in-air fatigue limit, failure did not occur for cathodically polarised specimens despite the number of loading cycles being 10 times that of the lifetime of identical tests in solution at the open circuit potential. At stress levels above the in-air fatigue limit the reduction in fatigue endurance caused by the presence of the corrosive environment can be partially recovered through cathodic polarization. The role of non-metallic inclusions in the cracking process under various exposure conditions is discussed, and a cracking mechanism is proposed.  相似文献   

19.
The extended finite element method (XFEM) combined with a cyclic cohesive zone model (CCZM) is discussed and implemented for analysis of fatigue crack propagation under mixed-mode loading conditions. Fatigue damage in elastic-plastic materials is described by a damage evolution equation in the cohesive zone model. Both the computational implementation and the CCZM are investigated based on the modified boundary layer formulation under mixed-mode loading conditions. Computational results confirm that the maximum principal stress criterion gives accurate predictions of crack direction in comparison with known experiments. Further popular multi-axial fatigue criteria are compared and discussed. Computations show that the Findley criterion agrees with tensile stress dominant failure and deviates from experiments for shear failure. Furthermore, the crack propagation rate under mixed mode loading has been investigated systematically. It is confirmed that the CCZM can agree with experiments.  相似文献   

20.
Press-fitted railway axles and wheels are subjected to fretting fatigue loading with a potential hazard of crack initiation in press fits. Typically, the resistance against crack initiation and propagation in press fits is investigated in full-scale tests, which procedure is both costly and time consuming. In this context, combined experimental and numerical approaches are of increasing practical importance, as these may reduce the experimental effort and, moreover, provide a basis for the transferability of experimental results to different axle geometries and materials. This study aims at evaluating stress–strain conditions under which fretting fatigue crack initiation is likely to occur. Experiments on small-scale specimens under varying fretting fatigue load parameters and their finite-element modelling to characterize the resulting stress–strain fields are performed. Subsequently, different multiaxial fatigue parameters are applied to predict crack initiation under fretting fatigue conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号