共查询到17条相似文献,搜索用时 93 毫秒
1.
H_2O_2预氧化-粉末活性炭吸附深度处理制药废水二级生化出水的研究 总被引:4,自引:0,他引:4
针对以小分子为主、难生物降解制药废水的二级生化出水,研究了混凝、粉末活性炭(PAC)吸附、H2O2氧化和H2O2预氧化-PAC吸附联合的方法对CODCr的去除效果的差异。试验结果表明:H2O2预氧化-PAC吸附协同处理,对CODCr有着很好的去除效果。当制药废水二级生化出水CODCr的质量浓度为1 067 mg/L时,投加1.0 g/L的H2O2预氧化15 min后,再投加1.0 g/L的PAC吸附,对CODCr的去除率达到50%~60%,CODCr去除效果得到提高。 相似文献
2.
采用Fenton氧化法处理抗生素类药品生产废水二级生化出水,考察了初始pH值、FeSO4·7H2O与H2O2投加量及投加方式、反应时间等因素对CODCr去除效果的影响。试验确定最佳操作条件为:初始pH值为4.0,一次性投加1.2 mL/L H2O2和1.0 g/L FeSO4·7H2O,两者的物质的量比约为3∶1,曝气反应2 h,最终CODCr的去除率可达56.8%;Fenton氧化可将废水m(BOD5)/m(CODCr)值由0.18提高至0.32,为后续生物处理提供了良好条件。 相似文献
3.
Fenton氧化-活性炭吸附协同深度处理抗生素制药废水研究 总被引:6,自引:0,他引:6
采用Fenton氧化-活性炭吸附协同处理工艺对抗生素制药废水二级生化出水进行了研究。探讨了温度、pH值、H2O2投加量、Fe2 投加量、反应时间,活性炭投加量及投加方式对COD去除率的影响。结果表明:在温度为30℃,pH值为5,H2O2(30%)投加量为300mg/L,FeSO4·7H2O投加量为80mg/L,反应时间为120min,活性炭投加量为50mg/L且与Fenton试剂同时加入时,COD去除率可达68.5%,处理出水达到了国家一级排放标准。 相似文献
4.
采用Fenton/SBR组合工艺深度处理头孢类制药废水二级生化出水。试验结果表明:在反应pH=4、FeSO4.7H2O投加浓度为0.6 mmol/L、H2O2(30%)投加浓度为20 mmol/L,反应时间为80 min情况下,COD由250 mg/L降到90 mg/L,B/C由0增加到0.51,可生化性得到较大提高。再在SBR内进行4 h的生化处理,出水COD降到40.3mg/L,达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A标准。 相似文献
5.
吸附-混凝-高级化学氧化法处理庆大霉素废水的研究 总被引:5,自引:2,他引:5
采用吸附-混凝-高级化学氧化法,对庆大霉素废水进行处理,筛选出最佳的混凝条件及氧化条件。实验发现,采用聚合氯化铝(PAC)和阳离子聚丙烯酰胺(CPAM)复合混凝该废水,在pH为8,PAC与CPAM的用量分别为400mg/L和10mg/L时混凝效果较好。混凝后的废水再用H2O+Fe^2 UV氧化,当pH为3时,采取三次投加方式加入2.4g/LH2O2,紫外灯照射6h,取得了满意的结果,实验结果表明:采用吸附-混凝-高级化学氧化处理庆大霉素废水是一种行之有效的途径。经该方法处理后的庆大霉素废水,其CODCR去除率为99.1%,脱色率达100%,达到了医药行业废水排放标准。且该方法设备简单,易于下一步实现工业放大,是一种有较好开发前景的处理庆大霉素废水工艺。 相似文献
6.
7.
为了提高制药废水的可生化性,采用KMnO4预氧化法对其进行预处理,探讨了反应温度、反应时间、溶液pH值、氧化剂投加量等因素对去除废水中CODCr等污染物浓度的影响,结果表明,最佳反应条件为:KMnO4投加量为13 mg/L,氧化反应温度为60℃,氧化反应时间为25 min,pH值为6,处理后废水各项指标均达到了GB 8978—1996《污水综合排放标准》的要求。预氧化法显著提高了废水的可生化性,有利于后续生化处理的进行。 相似文献
8.
采用氧化-生化法处理制药废水 总被引:7,自引:0,他引:7
采用氧化-生化法处理制药工业废水,处理量为100m^3/d,进水CODcr为1000-4000mg/L。运行实践表明,氧化处理工艺能够降解该废水中的大多数高分子化合物;生化处理中的水解酸化工艺可明显提高废水的可生物降解性,生物接触氧化处理工艺CODcr去除率大于97%。采用该工艺的废水处理装置从2003年9月运行至今.处理出水各项指标完全符合国家排放标准,运行结果表明,该工艺处理效果稳定,耐负荷冲击性强,工艺组合合理.具有广阔的工业应用前景。 相似文献
9.
针对制浆造纸厂生化出水难以达标排放的问题,采用单因素试验方法对比研究了预混凝-臭氧氧化法、预混凝-Fenton氧化法的深度处理效果。结果表明:预混凝-臭氧氧化法在PAC投加量为150 mg/L,臭氧投加量为367.5 mg/L时,COD_(Cr)的质量浓度可降至84.1mg/L,满足GB 3544—2008《制浆造纸工业污染物排放标准》;预混凝-Fenton氧化法在PAC投加量为150 mg/L, m(H_2O_2)∶m(COD_(Cr))=3∶1、 n(FeSO_4)∶n(H_2O_2)=1∶20时,COD_(Cr)质量浓度为92.1 mg/L,不满足GB 3544—2008的要求;臭氧氧化、 Fenton氧化2种高级氧化技术均可有效去除废水色度;随着H_2O_2投加量的增加,Fenton氧化法中H_2O_2的利用率越来越低。预混凝-臭氧氧化法的处理效果优于预混凝-Fenton氧化法,更适合制浆造纸废水的深度处理。 相似文献
10.
11.
Fenton试剂法深度处理皮革废水生化出水的研究 总被引:6,自引:0,他引:6
以加工生牛皮为主的皮革厂废水处理站生化出水为研究对象,研究了Fenton试剂对此废水的处理效果及影响因素。试验确定降解此类皮革废水生化出水的最佳条件为:pH值5.0,H2O2投加量600 mg/L,Fe2+的投加量500 mg/L,反应时间50 min。在此条件下,当进水COD的质量浓度为333 mg/L,色度为90倍时,COD和色度的去除率分别达到73.3%和98%,废水COD的质量浓度降至89 mg/L,色度降至5倍以下,达到《污水综合排放标准》(GB8978-1996)皮革废水一级标准。 相似文献
12.
13.
14.
采用好氧+厌氧组合人工快渗(OCRI+ACRI)工艺处理印染二级生化出水,考察了运行过程中氮素污染物的迁移转化规律及脱氮效果。结果表明,组合工艺运行28 d后可成功启动部分亚硝化和厌氧氨氧化,稳定运行期间COD、NH4+-N、TN平均去除率分别为87.2%、99.0%、96.9%,出水浓度均达到《纺织染整工业水污染物排放标准》(GB 4287-2012)的直接排放标准。组合CRI工艺共运行180 d,OCRI反应器内主要发生部分亚硝化,其对COD、NH4+-N、TN的去除率分别为87.3%、60.1%、5.2%。ACRI反应器内主要发生厌氧氨氧化,其对COD、NH4+-N、TN的去除率分别为12.7%、39.9%、94.8%。 相似文献
15.
以合肥市望塘污水处理厂二级出水作为试验原水,采用O3/UV深度处理工艺,通过静态试验考察了O3、UV和O3/UV对水中有机物的处理效果。结果表明:波长为254 nm的紫外线和O3对水体中有机物的深度处理过程具有协同作用,在O3投加量为2.0 L/min和15 W的VUV作用50 min后,CODCr去除率可以达到72.2%。从经济和节能的角度出发,通过改变紫外灯作用时间点和作用时长对O3/UV工艺进行优化,可以采用紫外灯间歇式开启,选用间隔时间为3 min,处理效果仍可达到预期要求。 相似文献
16.
The experimental results on advanced treatment of secondary sewage effluent by ultrafiltration (UF) and reverse osmosis (RO) are presented in this paper, particularly focused on pretreatment system, operating condition, membrane cleaning system, and product water quality. 相似文献