共查询到18条相似文献,搜索用时 62 毫秒
1.
所做的工作是利用粒子滤波理论解决目标跟踪所面临的技术问题。首先介绍粒子滤波中的两种重要算法:贝叶斯理论和蒙特卡罗方法,接着在此基础上详细阐述基于粒子滤波的目标跟踪算法。 相似文献
2.
3.
提出了一种将粒子滤波和CamShift相结合的多特征视觉跟踪方法.通过CamShift对粒子的位置和尺度同时进行优化,使得跟踪窗口能随着目标尺度的大小变化相应调整.同时采用自适应方式将颜色信息和运动信息在CamShift优化的粒子滤波框架下有效结合起来.该方法使用CamShift对粒子传播进行优化,每个粒子都收敛到目标附近,粒子的有效性得到提高.实验结果表明,使用10个粒子的CamShiit优化的粒子滤波的跟踪误差小于100个粒子的传统粒子滤波的跟踪误差.并且由于多特征的使用,目标在受到背景相似物体干扰和场景光线发生显著变化等情况下仍能实现稳定的跟踪.用较少的粒子就能实现稳定的跟踪,减少了计算代价,提高了跟踪的鲁棒性. 相似文献
4.
5.
一类基于信息融合的粒子滤波跟踪算法 总被引:2,自引:3,他引:2
本文提出了一种基于图像多特征信息融合的粒子滤波跟踪算法.该算法利用颜色柱状图描述运动目标颜色分布信息,帧间差的梯度图像描述目标运动信息,并在柱状图框架下给出了运动目标颜色和运动似然模型,保证了颜色和运动似然模型在尺度上的统一.由于图像多特征提供了运动目标多方面的测量信息,从而提高了算法的可靠性.试验表明该算法在使用相同粒子数目的情况下较采用单一颜色特征的粒子滤波跟踪算法效果好. 相似文献
6.
7.
8.
9.
10.
基于遗传进化策略的粒子滤波视频目标跟踪 总被引:1,自引:0,他引:1
粒子退化问题是影响基于粒子滤波视觉跟踪性能的一个重要因素,为克服这种缺陷,本文将遗传进化策略引入粒子滤波跟踪算法,利用遗传算法的选择策略,根据预定的似然阈值迭代选择每代粒子中次优个体,然后对未选中的粒子实施交叉、变异操作以获得粒子的多样性,从而有效解决了粒子的退化问题.另外,针对跟踪中目标表观变化的问题,本文提出的跟踪算法采用了多模板自适应更新技术以确保跟踪的准确性.实验结果表明,本文提出的跟踪算法能有效地跟踪室内运动目标,并对光照变化、目标姿态变化具有良好的鲁棒性. 相似文献
11.
一种基于粒子滤波的特征融合跟踪算法 总被引:3,自引:1,他引:3
针对单纯的基于颜色的跟踪方法在复杂背景下会导致跟踪失败的问题,本文提出一种基于粒子滤波的特征融合跟踪算法。颜色直方图是对目标的全局描述,而方向梯度直方图包含了一定的结构信息,二者可以互为补充,因此本文算法同时用颜色直方图和方向梯度直方图来描述目标,在粒子滤波框架下将目标颜色和梯度信息有机结合,并自适应更新。实验表明,本文算法不仅提高了跟踪精度,而且具有较强的鲁棒性。 相似文献
12.
为了减小目标跟踪中目标变形、光照影响、运动模糊以及目标旋转对跟踪效果的影响,在相关滤波KCF基础上,提出了一种基于自适应特征融合的多尺度相关滤波跟踪算法。首先,提取VGG19网络中conv2-2、conv3-4、conv5-4层的特征以及CN特征,并在conv2-2层加入CN特征;然后,将这3个特征分别代替HOG特征进行滤波学习,得到3幅响应图;进而对3幅响应图进行加权融合预测目标位置。最后,在尺度方面引入多尺度相关滤波器进行尺度的确定。该算法比KCF跟踪算法精确度和成功率分别提高了13.6%和11.8%。与现有的其他优异跟踪算法相比,该算法在应对运动模糊、背景杂乱、目标变形、平面旋转方面更具有较好的跟踪效果。 相似文献
13.
针对复杂场景中多目标跟踪问题,本文给出了目标的出现与消失、遮挡等模型描述,将其统一到粒子滤波的框架下,提出了一种可以处理目标数可变的多目标跟踪算法.对场景中的目标数建立马尔科夫模型,采用转移概率矩阵描述跟踪过程中目标出现,消失的情况;在状态表示中增加辅助变量,明确目标之间可能的遮挡;采用目标空间直方图建立基于唯一性原则的观测似然函数,通过后验概率分布估计目标数及目标状态.实验结果表明,本文算法能有效地处理跟踪过程中的目标数变化、目标遮挡等问题,实现多目标的正确跟踪. 相似文献
14.
实际人脸跟踪过程中,光照和姿态的变化、背景颜色干扰等因素都会极大地削弱颜色特征的有效性,从而造成跟踪的不稳定.针对该问题,本文提出了一种以颜色和轮廓分布为线索的粒子滤波人脸跟踪算法.该算法主要有三个方面的特点:第一,在粒子滤波基本框架下,引入新的用直方图描述人脸轮廓的方法,有效解决了光照、人脸旋转、部分遮挡问题对跟踪的影响,并且能及时有效地重新捕获由于大面积遮挡等原因而丢失的目标.同时采用实时调整每帧图像特征点个数,有效提高了跟踪效率.第二,针对背景干扰问题,提出了一种抑制相似背景颜色干扰的方法.第三,本文还提出实时更新模板的方法来提高跟踪的准确性.实验证明本文算法对人脸跟踪具有很好的效果. 相似文献
15.
Here, an adaptive real‐time 3D single particle tracking method is proposed, which is capable of capturing heterogeneous dynamics. Using a real‐time measurement of a rapidly diffusing particle's positional variance, the 3D precision adaptive real‐time tracking (3D‐PART) microscope adjusts active‐feedback parameters to trade tracking speed for precision on demand. This technique is demonstrated first on immobilized fluorescent nanoparticles, with a greater than twofold increase in the lateral localization precision (≈25 to ≈11 nm at 1 ms sampling) as well as a smaller increase in the axial localization precision (≈ 68 to ≈45 nm). 3D‐PART also shows a marked increase in the precision when tracking freely diffusing particles, with lateral precision increasing from ≈100 to ≈70 nm for particles diffusing at 4 µm2 s?1, although with a sacrifice in the axial precision (≈250 to ≈350 nm). This adaptive microscope is then applied to monitoring the viral first contacts of virus‐like particles to the surface of live cells, allowing direct and continuous measurement of the viral particle at initial contact with the cell surface. 相似文献
16.
K-均值聚类具有简单、快速的特点,因此被广泛应用于图像分割领域.但K-均值聚类容易陷入局部最优,影响图像分割效果.针对K-均值的缺点,提出一种基于随机权重粒子群优化(RWPSO)和K-均值聚类的图像分割算法RWPSOK.在算法运行初期,利用随机权重粒子群优化的全局搜索能力,避免算法陷入局部最优;在算法运行后期,利用K-均值聚类的局部搜索能力,实现算法快速收敛.实验表明:RWPSOK算法能有效地克服K-均值聚类易陷入局部最优的缺点,图像分割效果得到了明显改善;与传统粒子群与K-均值聚类混合算法(PSOK)相比,RWPSOK算法具有更好的分割效果和更高的分割效率. 相似文献
17.
针对利用鱼类行为监测进行水体环境保护的问题,本文提出了基于视频的鱼类运动跟踪研究,通过对鱼类运动视频进行分割、跟踪,获得鱼类运动的轨迹和速度,为鱼类参与环境污染研究奠定了理论基础(通过对比不同污染环境中鱼类运动的一些参数,进行水体环境污染程度的定量分析).该算法采用标记多尺度分水岭方法进行鱼类运动分割,然后通过改进的加权Hausdorff距离对鱼类运动视频进行跟踪,最后为了容纳鱼类在运动过程中形状的变化,在多值图像中引入欧几里德范数作为约束务件来完成跟踪模型的更新.实验结果表明,本文算法呈稳定跟踪状态,在连续100帧的跟踪过程中没有出现超过1个像素的位置差,跟踪速度差值也未超过0.12个像素,能够快速、精确分割和跟踪鱼类运动目标. 相似文献