共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent developments in the understanding of fretting fatigue 总被引:2,自引:0,他引:2
Considerable progress has been made in the understanding of fretting fatigue over the last decade. Experiments have become more standardised and carefully controlled and this has provided the data necessary for development of methods for predicting fretting fatigue performance. This paper reviews a number of recent developments, starting with attempts to apply multiaxial initiation criteria to the fretting problem. The importance of the size effect is highlighted and an analogy is made between fretting and notch fatigue. Methods for characterising crack initiation using asymptotic analysis are discussed, together with short crack arrest concepts which provide a means of predicting fretting fatigue limits from plain fatigue data. 相似文献
2.
Press-fitted railway axles and wheels are subjected to fretting fatigue loading with a potential hazard of crack initiation in press fits. Typically, the resistance against crack initiation and propagation in press fits is investigated in full-scale tests, which procedure is both costly and time consuming. In this context, combined experimental and numerical approaches are of increasing practical importance, as these may reduce the experimental effort and, moreover, provide a basis for the transferability of experimental results to different axle geometries and materials. This study aims at evaluating stress–strain conditions under which fretting fatigue crack initiation is likely to occur. Experiments on small-scale specimens under varying fretting fatigue load parameters and their finite-element modelling to characterize the resulting stress–strain fields are performed. Subsequently, different multiaxial fatigue parameters are applied to predict crack initiation under fretting fatigue conditions. 相似文献
3.
Sam Naboulsi 《Engineering Fracture Mechanics》2005,72(10):1610-1623
In literature the most common approach to investigate fretting fatigue is based on contact mechanics. Crack initiation parameters of fretting fatigue are developed using elastic solution of two contacting bodies. Even though contact based parameters has been used extensively, they could not fully capture crack initiation mechanism due to the complexities of the fretting fatigue damage process, which depends on pad geometries, surface properties, material properties, and mechanical loading conditions. This has instigated fretting fatigue researcher to investigate other approaches. Recently, taking advantage of the similarities between contact mechanics and fracture mechanics lead to the development of crack analogy methodology (CAM), which defines the stress intensity factor as a fretting fatigue crack initiation parameter. CAM has shown a great potential investigating fretting fatigue. However, it has not been applied to wide range of fretting fatigue scenarios. The scope of this paper is not to focus on analytical development of CAM as much as validating its ability to analyze various fretting fatigue scenarios. Based on CAM, the present study introduces the crack analogy fretting parameter (CAF-parameter) to investigate crack initiation of fretting fatigue, which is equivalent to the change of mode II stress intensity factor at the contact surface, since the change in the stress intensity factor reflects the cyclic mechanism of fatigue. Further, a modification to the CAM is adopted to include various indenter-substrate geometries. Also, CAF-parameter-life curve, similar to the stress-life S-N curve, will be developed as a prediction tool to crack initiation for various geometric configurations using experimental data. This is consistent with presenting fatigue data. The results show similar pattern to plain fatigue with lower damage tolerance. It also shows scatter and dependency on the pad configuration as expected. Finally, the CAF-parameter shows potentials in effectively analyzing/predicting the complex mechanism of fretting fatigue. 相似文献
4.
D. Houghton P.M. Wavish E.J. Williams S.B. Leen 《International Journal of Fatigue》2009,31(11-12):1805
This paper presents a combined experimental and computational methodology for fretting fatigue life prediction of aeroengine splined couplings under combined loading cycles involving cyclic torque and axial load, as well as rotating bending and fluctuating torque. The experimental method is based on the concept of a simplified representative test, which mimics the multiaxial fretting conditions between spline teeth via biaxial loading of specially-designed bridge pads and a fatigue specimen. The numerical method is based on a three-dimensional finite element model of the test rig assembly, including frictional contact effects, along with a multiaxial, critical-plane fatigue parameter for crack nucleation followed by crack growth prediction in the Paris regime using El Haddad small crack correction. The prediction methodology is shown to successfully capture the effect of the key fretting fatigue stress, which mimics the spline rotating bending moment, on total fatigue life. 相似文献
5.
Fatigue in notched specimens and fretting fatigue are two different phenomena but they have in common the existence of a stress gradient. In these cases fatigue life estimation is usually considered as a superposition of an initiation and propagation phase. One of the main problems to estimate the fatigue life is to define the crack length where one phase finishes and the other begins. The model employed in this paper combines both phases without defining a priori the separation between them. The proposed model is applied to uniaxial and multiaxial fatigue in specimens with stress gradient: a group of fretting fatigue tests with spherical and cylindrical contact and another group of tests with notched specimens. The comparison between life estimations and experimental results allows checking the validity of the model in different conditions. 相似文献
6.
In fretting fatigue, the combination of small oscillatory motion, normal pressure and cyclic axial loading develops a noticeable stress concentration at the contact zone leading to accumulation of damage in fretted region, which produces micro cracks, and consequently forms a leading crack that can lead to failure. In fretting fatigue experiments, it is very difficult to detect the crack initiation phase. Damages and cracks are always hidden between the counterpart surfaces. Therefore, numerical modeling techniques for analyzing fretting fatigue crack initiation provide a precious tool to study this phenomenon. This article gives an insight in fretting fatigue crack initiation. This is done by means of an experimental set up and numerical models developed with the Finite Element Analysis (FEA) software package ABAQUS. Using Continuum Damage Mechanics (CDM) approach in conjunction with FEA, an uncoupled damage evolution law is used to model fretting fatigue crack initiation lifetime of Double Bolted Lap Joint (DBLJ). The predicted fatigue lifetimes are in good agreement with the experimentally measured ones. This comparison provides insight to the contribution of damage initiation and crack propagation in the total fatigue lifetime of DBLJ test specimens. 相似文献
7.
Motivated by experimental observations, we carry out a numerical analysis of the two-stage crack growth under fretting fatigue by using an efficient and accurate boundary element method. To start with, the variation of stress field during a loading cycle is analyzed. Various values of friction coefficient in the contact zone are considered, which is shown to considerably affect the stress field. Then, by assuming crack initiation to occur in the shear mode, a surface-breaking crack is introduced to the specimen at the location of highest shear-stress amplitude. The crack-tip stress intensity factors (SIFs) are calculated for various crack lengths and at various crack angles ranging from 25° to 45° about the contact surface. It is shown that, for a loading ratio of 0.5, the cyclic mode-II SIF amplitude decreases with increasing crack length, whilst its mean value increases. It suggests that the (first-stage) shear crack would sooner or later become dormant, or switch to another mode that can provide continuous support of growth. Then, the first-stage shear crack is manually kinked into a second-stage opening crack, and the follow-on driving force is analyzed. It is shown that the kinking event is only favored after the first-stage crack has grown to a certain length. The present study thus provides insights in the mechanics of two-stage crack growth that has been frequently observed in a typical dovetail joint under fretting fatigue. It also suggests an improved experimental setup to quantitatively investigate the fretting fatigue in dovetail joints. 相似文献
8.
A study was conducted to verify the efficacy of a fracture mechanics methodology to model the crack growth behavior of fretting fatigue-nucleated cracks obtained under test conditions similar to those found in turbine engine blade attachments. Experiments were performed to produce cracked samples, and fretting fatigue crack propagation lives were calculated for each sample. Cracks were generated at 106 cycles (10%-of-life) under applied stress conditions previously identified as the fretting fatigue limit conditions for a 107 cycle fatigue life. Resulting cracks, ranging in size from 30 to 1200 μm, were identified and measured using scanning electron microscopy. Uniaxial fatigue limit stresses were determined experimentally for the fretting fatigue-cracked samples, using a step loading technique, for R=0.5 at 300 Hz. Fracture surfaces were inspected to characterize the fretting fatigue crack front indicated by heat tinting. The shape and size of the crack front were then used in calculating ΔKth values for each crack. The resulting uniaxial fatigue limit and ΔKth values compared favorably with the baseline fatigue strength (660 MPa) for this material and the ΔKth value (2.9 MPa√m) for naturally initiated cracks tested at R=0.5 on a Kitagawa diagram.Crack propagation lives were calculated using stress results of FEM analysis of the contact conditions and a weight function method for determination of ΔK. Resulting lives were compared with the nine million-cycle propagation life that would have been expected in the experiments, if the contact conditions had not been removed. Scatter in the experimental results for fatigue limit stresses and fatigue lives had to be considered as part of an explanation why the fatigue life calculations were unable to match the experiments that were modeled. Analytical life prediction results for the case where propagation life is observed to be very short experimentally were most accurate when using a coefficient of friction, μ=1.0, rather than for the calculations using μ=0.3 相似文献
9.
10.
A two-dimensional theoretical model is proposed for investigation of the fracture processes and assessing residual contact durability of solids subjected to cyclic contact. The model is based on the step-by-step calculation of fatigue crack propagation paths in the contact region which includes the criteria of local fracture of materials under complex stress–strain state, characteristics of fatigue crack growth resistance of materials and also presupposes the possible change of fracture mechanisms (transversal shear – normal opening fracture mechanisms). Within the frames of the model the peculiarities of formation of such typical contact fatigue damages like pits, spalls, squat (“dark spot”) and cracking (“checks”) in rolling bodies and edge cracks growth in the elements of fretting couples under conditions of sliding/sticking between them are investigated. Examples of assessing the life time by damages formation (pitting and spalling) in the contact region are presented. 相似文献
11.
This paper is focused on the effect of sea water corrosion on the gigacycle fatigue strength of a martensitic–bainitic hot rolled steel R5 used for manufacturing off-shore mooring chains for petroleum platforms in the North Sea. Crack initiation fatigue tests in the regime of 106 to 1010 cycles were carried out on smooth specimens under three different environment conditions: (i) without any corrosion (virgin state) in air, (ii) in air after pre-corrosion, and (iii) in-situ corrosion-fatigue under artificial sea water flow. A drastic effect of sea water corrosion was found: the median fatigue strength beyond 108 cycles is divided by 5 compared to virgin state specimens. The crack initiation sites were corrosion pits caused by pre-corrosion or created during corrosion-fatigue under sea water flow. Furthermore some sub-surface and internal crack initiations were observed on specimens without any corrosion (virgin state). Crack propagation curves were obtained in mode I in air and under sea water flow. Calculation of the stress intensity factor at the tip of cracks emanating from hemispherical surface pits combined with the Paris–Hertzberg–Mc Clintock crack growth rate model showed that fatigue crack initiation period represents most of the fatigue life in the VHCF regime. Additional original experiments have shown physical evidences that the fatigue strength in the gigacycle regime under sea water flow is mainly governed by the corrosion process with a strong coupling between cyclic loading and corrosion. 相似文献
12.
Elastomeric components have wide usage in many industries. The typical service loading for most of these components is variable amplitude and multiaxial. In this study a general methodology for life prediction of elastomeric components under these typical loading conditions was developed and illustrated for a passenger vehicle cradle mount. Crack initiation life prediction was performed using different damage criteria. The methodology was validated with component testing under different loading conditions including constant and variable amplitude in-phase and out-of-phase axial–torsion experiments. The optimum method for crack initiation life prediction for complex multiaxial variable amplitude loading was found to be a critical plane approach based on maximum normal strain plane and damage quantification by cracking energy density on that plane. Rainflow cycle counting method and Miner’s linear damage rule were used for predicting fatigue life under variable amplitude loadings. The fracture mechanics approach was used for total fatigue life prediction of the component based on specimen crack growth data and FE simulation results. Total fatigue life prediction results showed good agreement with experiments for all of the loading conditions considered. 相似文献
13.
Thierry Palin-Luc Rubén Pérez-Mora Claude Bathias Paul C. Paris 《Engineering Fracture Mechanics》2010,77(11):1953-1962
This paper is devoted to the effect of corrosion on the gigacycle fatigue strength of a martensitic-bainitic hot rolled steel used for manufacturing offshore mooring chains for petroleum platforms. Smooth specimens were tested under fully reversed tension between 106 and 1010 cycles in three testing conditions and environments: (i) in air, (ii) in air after pre-corrosion and (iii) in air under real time artificial sea water flow. The fatigue strength at greater than 108 cycles is reduced by a factor more than five compared with non-corroded specimens. Fatigue cracks initiate at corrosion pits due to pre-corrosion, if any, or pits resulting from corrosion in real time during the cyclic loading. It is shown that under sea water flow, the fatigue life in the gigacycle regime is mainly governed by the corrosion process. Furthermore, the calculation of the mode I stress intensity factor at hemispherical surface defects (pits) combined with the Paris-Hertzberg-Mc Clintock crack growth rate model shows that fatigue crack initiation regime represents most of the fatigue life. 相似文献
14.
Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution 总被引:1,自引:0,他引:1
In the present study, corrosion fatigue experiments were done using the extruded magnesium alloy AZ31 in the 3% sodium chloride solution to clarify the corrosion fatigue characteristics of the material. Corrosion fatigue lives greatly decreased as compared with those in laboratory air. It was also clarified that most of the corrosion fatigue life (70–80%) at the lower stress amplitude is occupied with the period of the corrosion pit growth. Corrosion fatigue lives were evaluated quantitatively by dividing the corrosion fatigue process into the following two periods, i.e. (1) the corrosion pit growth period preceding the crack initiation from the pit and (2) the crack growth period before the specimen failure. In the analysis, the law of the corrosion pit growth proposed by authors was used to deal with the above first period. The evaluated results corresponded well to the experimental results. 相似文献
15.
In this work, the modeling of LEFM problems that imply crack face closure and contact using the extended finite element method (X-FEM) is presented aiming at its application to fretting fatigue problems. An assessment of the accuracy in the calculation of KII is performed for two different techniques to model crack face contacts in X-FEM: one is based on the use of additional elements to establish the contact and the other on a segment-to-segment (or mortar) approach. It is concluded that only the segment-to-segment approach can lead to optimal convergence rates of the error in KII. The crack face contact modeling has also been applied to a fretting fatigue problem, where the estimation of KII under crack closure conditions plays an important role in the stage I of fatigue crack propagation. The effect of the crack face friction coefficient has been studied and its influence on the range of KII has been ascertained during loading and unloading cycles. 相似文献
16.
A robust approach for the deterministic prediction of pressure distribution in dry rough-line contact configuration considering the elastic-fully plastic asperity effects is presented. Adopting Civarella–Jager approach, a procedure for calculation of the tangential traction distribution for cyclic loading condition in stick–slip regime is also described in detail. The effect of surface roughness on the pressure and tangential traction distribution and sub-surface stress field is evaluated. To illustrate the utility of the approach, the crack initiation risk in a stick–slip (fretting) contact is investigated for different surface roughness values. The methodology is conceptually simple and can be easily implemented in a computer code. 相似文献
17.
M. Abbadi S. Belouettar P. Muzzo P. Kremer O. Oussouaddi A. Zeghloul 《International Journal of Fatigue》2008,30(7):1160-1168
A numerical model for low cycle fatigue damage analysis of valve membranes is presented in this paper. The isotropic and non-linear kinematic hardening laws of Lemaître–Chaboche, which define both the cyclic hardening and the ratchetting phenomenon, are adopted. The model for prediction of the number of cycles to crack initiation is based on a combination between Manson–Coffin relationship and Jiang–Sehitoglu fatigue parameter. The applied cyclic loading consists in a load pressure imposed to the internal face of the membrane and a vertical displacement of its hub section. The experimental results and numerical simulation predictions in terms of number of cycles to failure turned out to be in good concordance. Thus, numerical predictions are confirmed by microscopic observations made on membranes failed during testing. 相似文献
18.
This study focuses on the stress gradient effect regarding the crack nucleation of a cylinder/plane Ti–6Al–4V titanium alloy contact under low cycle fatigue (LCF) fretting loading. Several local and non-local analytical approaches were compared to predict experimental results. The first part of the study presents fretting nucleation boundaries for three different cylinder radii in the partial slip regime. In the next part, the Crossland and Papadopoulos multi-axial fatigue criteria are computed and compared. Finally, local and non-local fatigue approaches are compared. Square constant volume, critical distance and weighted function approaches have been compared.The methodology used covers a large range of stress gradients. The impact of varying the stress gradients is that the larger the stress gradient, the larger the difference between experiments and local stress fatigue predictions. A Crossland local form was applied to confirm that a local stress fatigue analysis cannot predict the fretting cracking risk. Three non-local approaches were carried out, and the results allowed the proper prediction of the empirical thresholds with a 3–5% margin of error. The positive results obtained helped to select a multi-axial fatigue criterion and a non-local approach which take into account the gradient effect of contact fretting behavior. 相似文献
19.
This paper is focused on the VHCF behavior of aeronautical titanium alloy under tensile and torsion fatigue loadings. Tensile tests were carried out with two different stress ratios: R = −1 and R = 0.1. Both surface and subsurface crack initiations were observed. In the case of subsurface crack initiation several fatigue life controlling mechanisms of crack initiation were found under fully-reversed loading conditions: initiation from (1) strong defects; (2) ‘macro-zone’ borders; (3) quasi-smooth facets and (4) smooth facets. Tests with stress ratio R = 0.1, have shown that initiation from the borders of ‘macro-zones’ becomes the dominant crack initiation mechanism in presence of positive mean stress. Like for the tensile results, surface and subsurface crack initiations were observed under ultrasonic torsion in spite of the maximum shear stress location on the specimen surface. But the real reason for the subsurface crack initiation under torsion was not found. 相似文献
20.
New material processing methods such as laser sintering of metal powder necessitates new knowledge and characterization of the material to support its implementation in technical applications. Fatigue behaviour of a laser sintered FeNiCu-alloy was studied with emphasis on crack path, initiation and propagation. Fatigue crack growth was investigated by surface replication in four-point bending fatigue tests. The fatigue behaviour was controlled by the complex layered structure. Pores on or under the surface were preferable places for crack initiation. Crack linkage and deflection occurred due to crack tip interaction with microstructure and sinter layers where microcracks initiated at pores adjacent to the advancing crack tip. Crack growth rate and stress intensity factor were calculated from surface replicas and showed an oscillating behaviour. 相似文献