共查询到16条相似文献,搜索用时 78 毫秒
1.
为更准确预测短期风电功率,提出了一种基于误差修正的NNA-ILSTM短期风电功率预测方法。首先,采用斯皮尔曼(Spearman)等级相关系数法对风电功率影响因素分析,选出相关性较高的参量;其次,对长短期记忆网络添加注意机制与修改损失函数以解决其对有效信息筛选不足的问题,利用神经网络算法(NNA)优化改进的长短期记忆网络(ILSTM)中的神经元数量和时间步长,提高其预测精度以及泛化能力,构建NNA-ILSTM预测模型;最后,分析预测误差与风电功率、风速之间相关性,构建误差修正模型,对NNA-ILSTM模型预测结果进行修正,得到风电功率预测的最终结果。实验结果表明,所提出的模型可以显著提高风电功率预测精度。 相似文献
2.
风资源因具有较强的波动性、随机性与间断性等特点而导致风电功率预测精度不高。为减小风电功率波动对电网的冲击,提高电力系统对风电的接受与消纳能力,提出了改进的风电功率短期预测方法与基于波动的误差修正方法。首先将风电功率按不同波动过程进行聚类划分,提取不同波动的特征曲线对功率值进行修正;采用引力搜索算法优化的反向传播神经网络(GSA-BP)作为基本预测方法进行预测;分析不同波动过程下的预测误差表现,建立预测误差与综合气象指标的映射关系。针对不同波动过程建立相应的风电功率误差修正模型,提出了线性模型和GSA-BP非线性模型相结合的方式对预测误差进行修正,最后以功率预测值叠加预测误差修正值作为最终预测结果。该风电功率预测误差修正方法不仅涉及风速风向等常规因素,而且考虑到了风电功率的波动性。 相似文献
3.
准确可靠的风电功率预测对电力系统调度、风电场的效益和电网的安全稳定运行具有重要意义。为了提高超短期风电功率预测的准确性,提出了一种基于自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和改进野狗优化算法(improved dog optimization algorithm,IDOA)优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的组合模型预测超短期风电功率方法。该方法先采用CEEMDAN分解方法将原始的数据分解来降低原始数据的复杂性和不稳定性,将分解后的所有序列进行偏自相关方法分析,选出重要性较大序列作为IDOA-BiLSTM模型的输入,最后通过IDOA-BiLSTM模型进行超短期风电功率预测。采用甘肃某风电场实测数据为数据集,进行训练模型和预测分析,结果表明所提出的超短期风电功率预测模型具有较高的预测精度,具备实际应用的可行性。 相似文献
4.
5.
对风电功率进行较为准确的预测是合理调整含有风电的电力系统或微电网系统的调度策略,提高其运行稳定性与经济性的有效手段。在分析传统风电功率预测过程的基础上,从基本预测方法在功率预测过程中的使用策略角度出发,提出了不依赖于基本预测方法的新的改进预测思路。在这种改进方法中,增加了误差预测模型,对传统方法的预测值所包含的误差值进行预测,并将通过误差预测模型得到的预测误差与传统方法的预测值叠加作为改进方法的最终预测结果,并以反向传播(BP)神经网络作为基本预测方法对实际风电场进行实例验证分析。计算结果表明:提出的改进风电功率预测方法能够较大幅度地提高预测精度;提出的改进思路和传统改进思路不同,并不涉及基本预测方法内部特性且无需引入其他辅助方法,因而具有良好的通用性。 相似文献
6.
7.
针对风能的波动性和间歇性,提出了一种基于改善集成经验模式分解(MEEMD)和最小二乘支持向量机(LSSVM)的风电功率超短期预测方法,首先利用MEEMD将功率序列根据频率高低分解为特征不同的本征模态分量(IMF),然后计算各IMF的样本熵,合并熵值相似的IMF分量。对合并之后的各IMF分量分别进行LSSVM子模型建模,最后将各分量建模结果叠加得到功率预测曲线。基于大连风电场现场数据的检验结果说明,该方法预测精度较高且运算时间合理,适用于工程上风电功率的预测。 相似文献
8.
风电功率对电力系统的安全运行、合理调度等方面有不可忽视的影响。掌握风电功率预测误差的分布特性,对风资源的大规模开发利用具有重要意义。利用两种混沌预测方法进行风电功率超短期的预测。并且以东北某风电场的实测风电功率数据为例,分析了超短期风电功率预测误差的概率分布、预测误差与超前预测步数之间的关系、预测误差与风电场出力情况之间的关系以及预测误差与装机容量之间的关系。该研究为揭示风电功率超短期多步预测的误差构成及修正奠定了理论基础。 相似文献
9.
短期风电功率预测一直是风电领域的研究热点,提出采用带位置和尺度参数的t分布描述风电功率预测的误差分布。分别采用差分自回归移动平均模型和BP神经网络,根据风电场实测数据进行功率预测,对两种预测模型产生的误差进行分析,验证了带位置和尺度参数的t分布可以有效描述预测误差分布。短期风电功率预测研究发现,带位置和尺度参数的t分布对误差的拟合优度高于正态分布,其各项参数可作为评价预测算法准确度的指标,通过分析分布参数可以直观了解预测算法的性能。 相似文献
10.
风电预测技术对构建高比例新能源的新型电力系统具有重要意义。数值天气预报(numerical weather prediction,NWP)的数据质量对风电功率日前预测的准确性有较大影响。然而,NWP的预报误差、NWP预报点与风电场间的空间距离和局地差异,往往导致NWP预报数据与风电场实测数据间存在时间横向误差和幅值纵向误差。对此,提出了一种基于时间序列相关性检验和残差通道注意力网络的NWP风速误差修正模型,将预报点处NWP风速修正为风电场轮毂风速。然后,结合修正后的NWP风速和风电场实时出力数据构建了基于双向门控循环网络的风电预测模型。最后,以华东某风电场的数据验证了所提方法的有效性。 相似文献
11.
提出了一种基于在线序贯极限学习机(OS-ELM)的超短期风电功率预测方法。利用OSELM学习速度快、泛化能力强的优点,将批处理和逐次迭代相结合,不断更新训练数据和网络结构,实现了对数值天气预报风速的快速实时修正和风电机组输出功率的快速预测。随后,采用计算机自助(Bootstrap)法构造伪样本,给出了预测功率的置信区间评估。实例和研究结果表明,该预测方法与反向传播(BP)网络、支持向量机(SVM)方法相比,在计算时间上更能满足在线应用需求,而且预测精度相当,有较好的应用前景。 相似文献
12.
针对风电功率预测误差多变分布特点,提出一种基于自适应扩散核密度分布的风电功率预测误差概率模型。利用将高斯核函数转换为线性扩散过程的自适应扩散核密度预测误差分布模型,并采用渐进均方积分误差法为扩散核函数选取自适应最优带宽,提高了风电功率预测误差拟合的局部适应性;其次,分析自适应扩散核密度分布模型在不同预测方法、不同装机容量和不同采样周期下对风电功率预测误差的拟合效果,并与高斯等混合参数模型和固定带宽核密度模型进行对比,验证了所建模型在不同情况下的适用性。 相似文献
13.
14.
关于短期及超短期风电功率预测的评述 总被引:9,自引:2,他引:9
讨论风电功率预测及其误差对电力系统的影响,从信息流观点解读风电功率预测过程,归纳影响风电功率预测精度的因素,并对风电功率预测的研究现状加以归类与梳理。在此基础上,讨论对风电功率预测结果评价指标的要求,提出误差评估指标应该反映整个时间窗口内的预报质量,并展望风电功率预测可能的突破。 相似文献
15.
准确的风速预测对风电扩大并网规模具有积极的推动作用。针对风速的波动性和随机性特征,提出了一种基于EMD、GPR和ISTA的短期风速预测模型。通过EMD对原始风速序列进行分解,利用GPR对分解后的序列子集进行一级预测,同时利用ISTA改进GPR的超参数优化选择过程;并将由此生成的误差序列带入到ISTA优化的GPR中进行二级预测,通过所得误差预测值对原始预测值进行校正并得到最终预测结果。案例分析表明,本文所提出的模型在短期风速预测中具有较高的预测精度。 相似文献
16.
针对风电功率预测中多环节交互影响的复杂性,文中提出一种风电功率预测误差的精细化评价方法,旨在利用数值天气预报、气象观测数据、风电运行数据等多源异构信息,定量分析功率预测各关键环节对预测总误差的影响程度。首先,解析了风电功率预测运行机理,将预测过程分解为数值天气预报、风能-功率转换建模、预测结果校正3个关键环节。然后,设计了基于核密度估计的风电异常数据分区间辨识方法,建立了风资源-电力特性的简化模型。最后,基于气象、电力等多源运行数据驱动,提出功率预测各环节等效误差的量度方法。算例结果表明,所提方法可定量评估各环节预测对功率预测误差的影响。 相似文献