首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CS-834 is a novel oral carbapenem antibiotic. This compound is an ester-type prodrug of the active metabolite R-95867. The antibacterial activity of R-95867 was tested against 1,323 clinical isolates of 35 species and was compared with those of oral cephems, i.e., cefteram, cefpodoxime, cefdinir, and cefditoren, and that of a parenteral carbapenem, imipenem. R-95867 exhibited a broad spectrum of activity covering both gram-positive and -negative aerobes and anaerobes. Its activity was superior to those of the other compounds tested against most of the bacterial species tested. R-95867 showed potent antibacterial activity against clinically significant pathogens: methicillin-susceptible Staphylococcus aureus including ofloxacin-resistant strains, Streptococcus pneumoniae including penicillin-resistant strains, Clostridium perfringens, Neisseria spp., Moraxella catarrhalis, most members of the family Enterobacteriaceae, and Haemophilus influenzae (MIC at which 90% of strains are inhibited, < or =0.006 to 0.78 microg/ml). R-95867 was quite stable to hydrolysis by most of the beta-lactamases tested except the metallo-beta-lactamases from Stenotrophomonas maltophilia and Bacteroides fragilis. R-95867 showed potent bactericidal activity against S. aureus and Escherichia coli. Penicillin-binding proteins 1 and 4 of S. aureus and 1Bs, 2, 3, and 4 of E. coli had high affinities for R-95867. The in vivo efficacy of CS-834 was evaluated in murine systemic infections caused by 16 strains of gram-positive and -negative pathogens. The efficacy of CS-834 was in many cases superior to those of cefteram pivoxil, cefpodoxime proxetil, cefdinir, and cefditoren pivoxil, especially against infections caused by S. aureus, penicillin-resistant S. pneumoniae, E. coli, Citrobacter freundii, and Proteus vulgaris. Among the drugs tested, CS-834 showed the highest efficacy against experimental pneumonia in mice caused by penicillin-resistant S. pneumoniae.  相似文献   

2.
CS-834, (+)-[pivaloyloxymethyl (4R,5S,6S)-6-[(R)-1-hydroxyethyl]-4-methyl-7-oxo-3-[[(R)-5-oxopyrroli din-3-yl]thio]-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate], is an ester-type oral carbapenem prodrug, and an active metabolite is R-95867, which has antibacterial activity. CS-834 was administered orally to healthy male volunteers at single doses of 50, 100, 200, and 400 mg and at a multiple dose of 150 mg three times a day for 7 days to investigate its safety and pharmacokinetic profiles. Other studies were conducted to examine the effect of food intake on the bioavailability of CS-834 and also the effect of the coadministration of probenecid on the pharmacokinetics of CS-834. In the fasting state, the concentration of R-95867 in plasma reached maximum levels from 1.1 to 1.7 h after the oral administration of CS-834, followed by a monoexponential decrease. The maximum concentrations of R-95867 in serum (C[max]s) after the administration of CS-834 at doses of 50, 100, 200, and 400 mg were 0.51, 0.97, 1.59, and 2.51 microg/ml, respectively. The half-lives (t1/2s) were almost constant, approximately 0.7 h. The areas under the concentration-time curves (AUCs) were proportional to the doses, ranging from 50 to 400 mg x h/ml. The cumulative recoveries in urine were approximately 30 to 35% until 24 h after drug administration. The C(max), AUC, t1/2, and recovery in urine were not affected by food intake. Probenecid coadministration prolonged the t1/2, and it increased the C(max) and AUC for R-95867 by approximately 1.5- and 2.1-fold, respectively. The multiple-dose study showed no change in the pharmacokinetics from those for the single doses and no drug accumulation in the body. A mild transient soft stool was observed in one volunteer in the study with a single dose of 400 mg. In the multiple-dose study, mild transient soft stools were observed in six volunteers, one volunteer had mild transient diarrhea, and one volunteer had elevated serum glutamic oxalacetic transaminase and serum glutamic pyruvic transaminase levels (1.4- and 2.8-fold compared with the upper limits of normal, respectively). There were no other abnormal findings for objective symptoms or laboratory findings, including blood pressure, heart rate, electrocardiogram, body temperature, hematology, blood chemistry, and urinalysis.  相似文献   

3.
The activity of biapenem was compared with that of imipenem and cefotaxime against 108 strains of beta-lactamase producing Enterobacteriaceae. Biapenem and imipenem were very active, inhibiting 90% of the strains at a concentration of 0.5 microgram/ml. Both carbapenems were very active against plasmidic beta-lactamase producers, with MIC90s below 1 microgram/ml. However, the MIC90 of biapenem for cephalosporinase producers was 1 microgram/ml. Against strains producing extended-spectrum beta-lactamases, biapenem exhibited better activity against TEM-type producers (MIC90 0.25 microgram/ml) than against SHV-type producers (MIC90 0.5 microgram/ml). Overall, the in vitro antibacterial activity of biapenem is similar to that of imipenem.  相似文献   

4.
ER-35786 is a new parenteral 1 beta-methyl carbapenem with a broad antibacterial spectrum and a potent antipseudomonal activity. It showed high in vitro activity, comparable to those of meropenem and a new carbapenem, BO-2727, against methicillin-susceptible Staphylococcus aureus and streptococci, with MICs at which 90% of strains tested are inhibited (MIC90S) of < or = 0.39 microgram/ml. Against methicillin-resistant S. aureus, ER-35786 was the most active among the compounds tested, yet its MIC90 was 12.5 micrograms/ml. Against members of the family Enterobacteriaceae, Moraxella catarrhalis, and Haemophilus influenzae, ER-35786 inhibited 90% of strains tested at a concentration of < or = 1.56 micrograms/ml. The MIC90 of ER-35786 for Pseudomonas aeruginosa was 3.13 micrograms/ml, and the compound was more active than meropenem. In addition, the activity of ER-35786 against imipenem-, meropenem-, cefclidin-, or ceftazidime-resistant P. aeruginosa was equal to or higher than that of the most active reference compound. The in vivo activity of ER-35786 was consistent with this in vitro activity. The in vivo activity of ER-35786 was highest for systemic infection models with methicillin-resistant S. aureus and beta-lactam-resistant P. aeruginosa strains. In acute pneumonia caused by P. aeruginosa, ER-35786 produced a greater reduction in the viable cell count in the lungs than did imipenem-cilastatin or meropenem.  相似文献   

5.
The in vitro activity of premafloxacin against 673 veterinary pathogens was evaluated. Premafloxacin was equivalent to ciprofloxacin, enrofloxacin, and danofloxacin in activity against the gram-negative bacilli but was much more active (MIC for 90% of the strains tested [MIC90], 0.015 to 0.25 microg/ml) than the comparison antimicrobial agents (MIC90, 0.13 to 16.0 microg/ml) against the staphylococci, streptococci, and anaerobes tested.  相似文献   

6.
Susceptibility of 230 penicillin- and erythromycin-susceptible and -resistant pneumococci to HMR 3647 (RU 66647), a new ketolide, was tested by agar dilution, and results were compared with those of erythromycin, azithromycin, clarithromycin, roxithromycin, rokitamycin, clindamycin, pristinamycin, ciprofloxacin, sparfloxacin, trimethoprim-sulfamethoxazole, doxycycline, chloramphenicol, cefuroxime, ceftriaxone, imipenem, and vancomycin. HMR 3647 was very active against all strains tested, with MICs at which 90% of the strains were inhibited (MIC90s) of 0.03 microg/ml for erythromycin-susceptible strains (MICs, < or =0.25 microg/ml) and 0.25 microg/ml for erythromycin-resistant strains (MICs, > or =1.0 microg/ml). All other macrolides yielded MIC90s of 0.03 to 0.25 and >64.0 microg/ml for erythromycin-susceptible and -resistant strains, respectively. The MICs of clindamycin for 51 of 100 (51%) erythromycin-resistant strains were < or =0.125 microg/ml. The MICs of pristinamycin for all strains were < or =1.0 microg/ml. The MIC90s of ciprofloxacin and sparfloxacin were 4.0 and 0.5 microg/ml, respectively, and were unaffected by penicillin or erythromycin susceptibility. Vancomycin and imipenem inhibited all strains at < or =1.0 microg/ml. The MICs of cefuroxime and cefotaxime rose with those of penicillin G. The MICs of trimethoprim-sulfamethoxazole, doxycycline, and chloramphenicol were variable but were generally higher in penicillin- and erythromycin-resistant strains. HMR 3647 had the best kill kinetics of all macrolides tested against 11 erythromycin-susceptible and -resistant strains, with uniform bactericidal activity (99.9% killing) after 24 h at two times the MIC and 99% killing of all strains at two times the MIC after 12 h for all strains. Pristinamycin showed more rapid killing at 2 to 6 h, with 99.9% killing of 10 of 11 strains after 24 h at two times the MIC. Other macrolides showed significant activity, relative to the MIC, against erythromycin-susceptible strains only.  相似文献   

7.
Research groups were formed in 21 institutions nationwide to investigate carbapenem resistance. The activities of various antibacterial agents, principally carbapenems were tested against clinical isolates collected from these institutions. The broth microdilution method was used to determine the minimum inhibitory concentrations (MIC) of 17 antibacterial agents for 1,282 strains of 11 bacterial species isolated at all institutions between October and December 1995. The results were as follows: 1. Carbapenems exhibited strong antibacterial activities against MSSA and Streptococcus pneumoniae. Their activities against Enterococcus faecalis were comparable to that of ABPC. Carbapenems showed low activities against MRSA. 2. OFLX exhibited the greatest antibacterial activity against Haemophilus influenzae, followed by MEPM. The antibacterial activities of the other carbapenems were comparable to those of FMOX and CTM. 3. The carbapenems showed high activities against Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, and Bacteroides fragilis group. Their activities were greater than that exhibited by other beta-lactam antibacterial agents. The carbapenems also exhibited greater antibacterial activities against Serratia marcescens than the other beta-lactam antibacterial agents, but some resistant strains were detected. 4. The antibacterial activities of carbapenems against Pseudomonas aeruginosa were comparable to those of CAZ, AZT, AMK.  相似文献   

8.
T-3761, a new quinolone derivative, showed broad and potent antibacterial activity. Its MICs for 90% of the strains tested were 0.20 to 100 micrograms/ml against gram-positive bacteria, including members of the genera Staphylococcus, Streptococcus, and Enterococcus; 0.025 to 3.13 micrograms/ml against gram-negative bacteria, including members of the family Enterobacteriaceae and the genus Haemophilus; 0.05 to 50 micrograms/ml against glucose nonfermenters, including members of the genera Pseudomonas, Xanthomonas, Acinetobacter, Alcaligenes, and Moraxella; 0.025 micrograms/ml against Legionella spp.; and 6.25 to 25 micrograms/ml against anaerobes, including Bacteroides fragilis, Clostridium difficile, and Peptostreptococcus spp. The in vitro activity of T-3761 against these clinical isolates was comparable to or 2- to 32-fold greater than those of ofloxacin and norfloxacin and 2- to 16-fold less and 1- to 8-fold greater than those of ciprofloxacin and tosulfoxacin, respectively. When administered orally, T-3761 showed good efficacy in mice against systemic, pulmonary, and urinary tract infections with gram-positive and gram-negative bacteria, including quinolone-resistant Serratia marcescens and Pseudomonas aeruginosa. The in vivo activity of T-3761 was comparable to or greater than those of ofloxacin, ciprofloxacin, norfloxacin, and tosufloxacin against most infection models in mice. The activities of T-3761 were lower than those of tosufloxacin against gram-positive bacterial systemic and pulmonary infections in mice but not against infections with methicillin-resistant Staphylococcus aureus. The activities of T-3761 against systemic quinolone-resistant Serratia marcescens and Pseudomonas aeruginosa infections in mice were 2- to 14-fold greater than those of the reference agents.  相似文献   

9.
The agar dilution MIC method was used to test the activity of cefminox, a beta-lactamase-stable cephamycin, compared with those of cefoxitin, cefotetan, moxalactam, ceftizoxime, cefotiam, cefamandole, cefoperazone, clindamycin, and metronidazole against 357 anaerobes. Overall, cefminox was the most active beta-lactam, with an MIC at which 50% of isolates are inhibited (MIC50) of 1.0 microg/ml and an MIC90 of 16.0 microg/ml. Other beta-lactams were less active, with respective MIC50s and MIC90s of 2.0 and 64.0 microg/ml for cefoxitin, 2.0 and 128.0 microg/ml for cefotetan, 2.0 and 64.0 microg/ml for moxalactam, 4.0 and > 128.0 microg/ml for ceftizoxime, 16.0 and > 128.0 microg/ml for cefotiam, 8.0 and >128.0 microg/ml for cefamandole, and 4.0 and 128.0 microg/ml for cefoperazone. The clindamycin MIC50 and MIC90 were 0.5 and 8.0 microg/ml, respectively, and the metronidazole MIC50 and MIC90 were 1.0 and 4.0 microg/ml, respectively. Cefminox was especially active against Bacteroides fragilis (MIC90, 2.0 microg/ml), Bacteroides thetaiotaomicron (MIC90, 4.0 microg/ml), fusobacteria (MIC90, 1.0 microg/ml), peptostreptococci (MIC90, 2.0 microg/ml), and clostridia, including Clostridium difficile (MIC90, 2.0 microg/ml). Time-kill studies performed with six representative anaerobic species revealed that at the MIC all compounds except ceftizoxime were bactericidal (99.9% killing) against all strains after 48 h. At 24 h, only cefminox and cefoxitin at 4x the MIC and cefoperazone at 8x the MIC were bactericidal against all strains. After 12 h, at the MIC all compounds except moxalactam, ceftizoxime, cefotiam, cefamandole, clindamycin, and metronidazole gave 90% killing of all strains. After 3 h, cefminox at 2 x the MIC produced the most rapid effect, with 90% killing of all strains.  相似文献   

10.
The purpose of the present investigation was to determine if the efficacy of amoxicillin-clavulanate against penicillin-resistant Streptococcus pneumoniae could be improved by increasing the pediatric amoxicillin unit dose (90 versus 45 mg/kg of body weight/day) while maintaining the clavulanate unit dose at 6.4 mg/kg/day. A rat pneumonia model was used. In that model approximately 6 log10 CFU of one of four strains of S. pneumoniae (amoxicillin MICs, 2 microg/ml [one strain], 4 microg/ml [two strains], and 8 microg/ml [one strain]) were instilled into the bronchi of rats. Amoxicillin-clavulanate was given by computer-controlled intravenous infusion to approximate the concentrations achieved in the plasma of children following the administration of oral doses of 45/6.4 mg/kg/day or 90/6.4 mg/kg/g/day divided every 12 h or saline as a control for a total of 3 days. Infusions continued for 3 days, and 2 h after the cessation of infusion, bacterial numbers in the lungs were significantly reduced by the 90/6.4-mg/kg/day equivalent dosage for strains for which amoxicillin MICs were 2 or 4 microg/ml. The 45/6.4-mg/kg/day equivalent dosage was fully effective only against the strain for which the amoxicillin MIC was 2 microg/ml and had marginal efficacy against one of the two strains for which amoxicillin MICs were 4 microg/ml. The bacterial load for the strain for which the amoxicillin MIC was 8 microg/ml was not reduced with either dosage. These data demonstrate that regimens which achieved concentrations in plasma above the MIC for at least 34% of a 24-h dosing period resulted in significant reductions in the number of viable bacteria, indicating that the efficacy of amoxicillin-clavulanate can be extended to include efficacy against less susceptible strains of S. pneumoniae by increasing the amoxicillin dose.  相似文献   

11.
The frequencies of isolation and susceptibilities to antimicrobial agents were investigated on 680 bacterial strains isolated from patients with urinary tract infections (UTIs) in 10 hospitals during the period of June 1996 to May 1997. Of the above bacterial isolates, Gram-positive bacteria accounted for 30.4% and a majority of them were Enterococcus faecalis. Gram-negative bacteria accounted for 69.6% and most of them were Escherichia coli. Susceptabilities of several isolated bacteria to antimicrobial agents were as followed; 1. Enterococcus faecalis Ampicillin (ABPC) showed the highest activity against E. faecalis isolated from patients with UTIs. Its MIC90 was 1 microgram/ml. Imipenem (IPM) and vancomycin (VCM) were also active with the MIC90S of 2 micrograms/ml. The others had low activities with the MIC90S of 16 micrograms/ml or above. 2. Staphylococcus aureus including MRSA Arbekacin (ABK) and VCM showed the highest activities against both S. aureus and MRSA isolated from patients with UTIs. The MIC90S of them were 1 or 2 micrograms/ml. The others except minocycline (MINO) had low activities with the MIC90S of 32 micrograms/ml or above. 3. Staphylococcus epidermidis ABK and VCM showed the strongest activities against S. epidermis isolated from patients with UTIs. The MICs for all strains were equal to or lower than 2 micrograms/ml. Cefazolin (CEZ), cefotiam (CTM) and cefozopran (CZOP) were also active with the MIC90S of 4 micrograms/ml. Compared with antimicrobial activities of cephems is 1995, the MIC90S of them had changed into a better state. They ranged from 4 micrograms/ml 16 micrograms/ml in 1996. 4. Streptococcus agalactiae All drugs except MINO were active against S. agalactiae. ABPC, CZOP, IPM, and clarithromycin (CAM) showed the highest activities. The MICs for all strains were equal to or lower than 0.125 micromilligrams. Tosufloxacin (TFLX) and VCM were also active with the MIC90S of 0.5 micromilligrams. 5. Citrobacter freundii Gentamicin (GM) showed the highest activity against C. freundii isolated from patients with UTIs. Its MIC90 was 0.5 micrograms/ml. IPM and amikacin (AMK) were also active with the MIC90S of 1 microgram/ml and 2 micrograms/ml, respectively. Cefpirome (CPR) and CZOP were also active with the MIC90S of 8 micrograms/ml. The MIC90S of the others were 16 micrograms/ml or above. 6. Enterobacter cloacae IPM showed the highest activity against E. cloacae. The MICs for all strains were equal to or lower than 0.5 microgram/ml. The MIC90S of ciprofloxacin (CPFX) and TFLX were 1 microgram/ml, the MIC90 of AMK was 2 micrograms/ml, the MIC90S of CZOP, GM and ofloxacin (OFLX) were 4 micrograms/ml. The MIC50S of cephems except CEZ, cefmetazole (CMZ) and cefaclor (CCL) had changed into a better state in 1996, compared with those in 1995. 7. Escherichia coli All drugs except penicillins and MINO were active against E. coli. Particularly CPR, CZOP and IPM showed the highest activities against E. coli. The MIC90S of them were 0.125 microgram/ml or below. Among E. coli strains, those with low susceptibilities to cephems except CEZ, cefoperazone (CPZ), latamoxef (LMOX) and CCL have increased in 1996, compared with those in 1995. 8. Klebsiella pneumoniae K. pneumoniae was susceptible to all drugs except penicillins, with the MIC90S of 2 micrograms/ml or below. CPR had the strongest activity, the MICs for all strains were equal to or lower than 0.25 microgram/ml. Flomoxef (FMOX), cefixime (CFIX), CZOP and carumonam (CRMN) were also active with the MIC90S of 0.125 microgram/ml or below. 9. Pseudomonas aeruginosa All drugs except quinolones were not so active against P. aeruginosa with the MIC90S were 32 micrograms/ml or above. Quinolones were more active in 1996 than 1995. The MIC90S of them were between 4 micrograms/ml and 8 micrograms/ml, and the MIC50S of them were between 1 microgram/ml and 2 micrograms/ml. 10. Serratia marcescens GM showed the highest activity against S. marcescens. Its MIC90 was 1 micro  相似文献   

12.
In vitro activities of 15 antimicrobial agents against 90 strains of Acinetobacter baumannii isolated from blood cultures from hospitalized patients were determined using the agar dilution method. Imipenem, ofloxacin, and ciprofloxacin had the best antimicrobial activity with minimum inhibitory concentrations (MIC50s) of 0.25 mu g/ml and MIC90s of 0.5-1 mu g/ml. beta-lactam antibiotics other than imipenem had poor activity, with MIC50s ranging from 8 to 64 mu g/ml and MIC90s from 32 to > or = 256 mu g/ml. The checkerboard titration method was used to study the effects of combination of two antimicrobial agents. Combinations of ceftazidime, aztreonam, imipenem, or ciprofloxacin with amikacin showed either synergistic effects or partial synergistic effects for 40.9%-86.4% of 22 tested strains. The best in vitro activity was observed with the combination of imipenem and amikacin. No antagonistic effects were observed with the combination of imipenem and amikacin. Synergistic effects were confirmed by time-kill curve studies. In conclusion, imipenem, ofloxacin, and ciprofloxacin were the three most active agents against human blood isolates of A. baumannii. The combination of a beta-lactam or ciprofloxacin with amikacin was synergistic for some of the isolates.  相似文献   

13.
The in vitro antibacterial activity of nine cephalosporins (cephalothin, cephaloridine, cephalexin, cefazolin, cefamandole, cefuroxime, cefatrizine, cefoxitin, and cefazaflur) was determined against 344 strains of Enterobacteriaceae and 99 nonfermentative gram-negative bacilli. Cefamandole, cefazaflur, and cefuroxime were the most active cephalosporins against the Enterobacteriaceae (with the exception of Serratia marcescens). However, cefoxitin was the only cephalosporin that inhibited all 30 S. marcescens strains in a concentration of 16 mug/ml and was by far the most active compound against selected cephalothin-resistant strains of Escherichia coli, Klebsiella, and Proteus mirabilis. Acinetobacter spp. were inhibited best by cefuroxime, but none of the cephalosporins had appreciable activity against the Pseudomonas spp.  相似文献   

14.
One hundred ninety-five individual vancomycin-resistant Enterococcus faecium (VRE) isolates from five upstate New York hospitals were studied for antimicrobial susceptibilities to LY333328, quinupristin-dalfopristin, teicoplanin, ampicillin, and gentamicin. LY333328 was the most active antibiotic against VRE. The effect of media and methods on the antibacterial activity of LY333328, its synergy with ampicillin, and the postantibiotic effects (PAE) of LY333328 and ampicillin were evaluated. In microdilution tests, the MIC of LY333328 at which 90% of the isolates were inhibited (MIC90) was 2 microg/ml in Mueller-Hinton II (MH II) broth and 1 microg/ml in brain heart infusion (BHI) broth. In contrast, on MH II agar the MIC90 was 4 microg/ml and on BHI agar it was >16 microg/ml. Bactericidal activity was observed for most strains at concentrations from 8 to >/=133 times the MIC of the tube macrodilution in MH II broth. A bactericidal effect of LY333328 plus ampicillin was demonstrated in time-kill studies, but there was great strain-to-strain variability. By the MH II agar dilution method, bacteristatic synergy (defined as a fractional inhibitory concentration of <0.5) with LY333328 and ampicillin was demonstrated for 61% of the strains tested. Under similar conditions, there was synergy with LY333328 and quinupristin-dalfopristin or gentamicin for 27 and 15% of the strains tested, respectively. The PAE of LY333328 was prolonged (23.0 h at 10 times the MIC). However, 50% normal pooled human serum decreased the PAE to 12.2 h at 10 times the MIC. Test conditions and media had a considerable effect on VRE susceptibilities to LY333328. The prolonged PAE of LY333328, a potent new bactericidal glycopeptide, and its synergy with ampicillin in a large proportion of strains suggest that further evaluation of this drug in pharmacokinetic studies and experimental infections, including those with VRE, is warranted.  相似文献   

15.
The comparative in vitro activity of RU 64004 (also known as HMR 3004), a new ketolide antibiotic, was tested by agar dilution against approximately 500 gram-positive organisms, including multiply resistant enterococci, streptococci, and staphylococci. All streptococci were inhibited by < or = 1 microg of RU 64004 per ml. The ketolide was more potent than other macrolides against erythromycin A-susceptible staphylococci and was generally more potent than clindamycin against erythromycin A-resistant strains susceptible to this agent. Clindamycin-resistant staphylococci (MIC, > 128 microg/ml) proved resistant to the ketolide, but some erythromycin A- and clindamycin-resistant enterococci remained susceptible to RU 64004.  相似文献   

16.
The synergistic relationship between vancomycin (VCM) and carbapenem (CRB) has been reported in antibacterial activity against CRB-resistant strains of MRSA. The purpose of this study is to investigate the antibacterial activity against CRB-resistant MRSA using VCM, panipenem (PAPM), and a combination of both. 8 strains of CRB-resistant MRSA were used to examine the effects of these antibiotics by the broth microdiluton technique. The effect of pH (pH 6, 7, 8) on MIC of VCM alone was not observed in 7 out of 8 strains; MICs were between 1.0-2.0 micrograms/ml. PAPM alone, however, showed an enhancing tendency in alkaline condition in 6 out of 8 strains. There was no influence of pH on MICs in the combination use of VCM and PAPM, showing additive effect in 1 strain and synergistic in 6 strains. Killing-curves against PAPM-resistant MRSA were examined under the following drug combinations; 1/4 MIC of VCM (0.5 micrograms/ml) plus 1/4 MIC of PAPM (16 micrograms/ml), and 1/4 MIC of VCM plus 1/8 MIC of PAPM (8 micrograms/ml). The former drug combination showed synersistic effect; decrease from 1.05 x 10(5) to 6.45 x 10(4) CFU/ml after 6 hours' incubation and to less than 10 CFU/ml after 24 hours. The latter drug combination showed synergistic activity (2.68 x 10(2) CFU/ml) after 24 hours' incubation, but lost antibacterial activity after 48 hours. In conclusion, PAPM in combination with VCM showed synergistic effects on CRB-resistant MRSA. This combination therapy should be evaluated for the treatment of MRSA infection in patients with renal dysfunction.  相似文献   

17.
A new macrolide subclass called ketolides, possess a mode of action similar to the macrolide-lincosamide-streptogramin (MLS) compounds. Utilizing reference in vitro tests, the in vitro activity of RU-66647 (a ketolide) was compared to other MLS compounds against 376 Gram-positive organisms and over 400 representative strains of Gram-negative bacilli. The ketolide's spectrum was most similar to clindamycin and an earlier drug in the series (RU-64004 or RU-004) against staphylococci and streptococci. However, RU-66647 was more active than erythromycin and azithromycin against oxacillin-resistant Staphylococcus spp. and vancomycin-resistant enterococci. Ketolide activity was more potent than other MLS drugs against vancomycin-susceptible enterococci (MIC90, 0.25-4 micrograms/ml) and all streptococci (MICs, < or = 0.25 microgram/ml). Erythromycin-resistant (constitutive) strains were generally inhibited by < or = 2 micrograms RU-66647/ml (staphylococci, 31 to 36%; streptococci, 100%; enterococci, 72%). RU-66647 was active against Haemophilus influenzae (MIC90, 2 micrograms/ml), Moraxella catarrhalis (MIC90, 0.12 microgram/ml), and pathogenic Neisseria spp. (MIC90 0.5 microgram/ml). The ketolide failed to inhibit Enterobacteriaceae, nonfermentative Gram-negative bacilli, and Bacteriodes fragilis group strains. RU-66647 was observed to be a promising new compound directed toward some organisms resistant to other MLS-class drugs.  相似文献   

18.
The in vitro activity of Bay 12-8039, a new oral 8-methoxyquinolone, was compared to the activities of 11 other oral antimicrobial agents (ciprofloxacin, levofloxacin, ofloxacin, sparfloxacin, azithromycin, clarithromycin, amoxicillin clavulanate, penicillin, cefuroxime, cefpodoxime, and doxycycline) against 250 aerobic and 140 anaerobic bacteria recently isolated from animal and human bite wound infections. Bay 12-8039 was active against all aerobic isolates, both gram-positive and gram-negative isolates, at < or = 1.0 microg/ml (MICs at which 90% of isolates are inhibited [MIC90s < or = 0.25 microg/ml) and was active against most anaerobes at < or = 0.5 microg/ml; the exceptions were Fusobacterium nucleatum and other Fusobacterium species (MIC90s, > or = 4.0 microg/ml) and one strain of Prevotella loeschii (MICs, 2.0 microg/ml). In comparison, the other quinolones tested had similar in vitro activities against the aerobic strains but were less active against the anaerobes, including peptostreptococci, Porphyromonas species, and Prevotella species. The fusobacteria were relatively resistant to all the antimicrobial agents tested except penicillin G (one penicillinase-producing strain of F. nucleatum was found) and amoxicillin clavulanate.  相似文献   

19.
AM-1155, a novel fluoroquinolone, exhibited potent activity against Streptococcus pneumoniae, including penicillin-resistant strains; the MIC90 for 48 clinical isolates was 0.25 mg/L. The antibacterial activity of AM-1155 against S. pneumoniae was higher than that of levofloxacin (MIC90 1 mg/L) and comparable with that of sparfloxacin. The MIC90s of penicillin G and erythromycin were 2 and > 4 mg/L, respectively. AM-1155 showed no cross-resistance to penicillin or erythromycin. For experimental murine pneumonia with S. pneumoniae intermediately resistant to penicillin, oral administration of AM-1155 showed efficacy higher than that of levofloxacin and equal to that of sparfloxacin. The efficacy of AM-1155 was also equal to that of subcutaneous penicillin G administration at the same dosage.  相似文献   

20.
We have tested the in vitro activities of eight fluoroquinolones against 160 Brucella melitensis strains. The most active was sitafloxacin (MIC at which 90% of the isolates are inhibited [MIC90], 0.12 microg/ml). In decreasing order, the activities (MIC90s) of the rest of the tested fluoroquinolones were as follows: levofloxacin, 0.5 microg/ml; ciprofloxacin, trovafloxacin, and moxifloxacin, 1 microg/ml; and ofloxacin, grepafloxacin, and gatifloxacin, 2 microg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号