首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以给水污泥为吸附剂,采用单因素实验,考察了多种因素对含磷废水中磷去除效果的影响。在磷初始浓度为50mg·L~(-1)、吸附剂投加量20 g·L~(-1)、pH值为4.5、吸附时间10h的条件下,磷去除率达93.15%。采用Lagergren一级动力学模型、伪二级动力学模型、颗粒内扩散模型、双常数模型,对吸附效果进行拟合分析。动力学研究结果表明,各浓度的实验数据均能较好地符合伪二级动力学模型。当磷溶液的初始浓度为50mg·L~(-1)时,实验结果符合一级动力学模型;当磷溶液的初始浓度分别为100mg·L~(-1)、150mg·L~(-1)时,颗粒内扩散模型和双常数模型对实验结果有较好的拟合效果。Langmuir和Freundlich等温吸附模型均符合污泥活性炭对含磷废水的吸附特性,热力学参数的计算结果表明,该吸附过程是自发的吸热反应。  相似文献   

2.
通过城市污泥热解制备污泥生物炭(BC),采用FeCl_3溶液浸渍污泥生物炭后制备出磁性污泥生物炭(MBC),对比了BC与MBC去除水溶液中Cd(Ⅱ)的能力。考察溶液初始pH、吸附时间、吸附温度以及Cd(Ⅱ)初始浓度对BC和MBC去除Cd(Ⅱ)效果的影响。结果表明,BC和MBC均符合拟二级动力学吸附模型;Langmuir吸附等温模型能够更好地描述BC和MBC去除Cd(Ⅱ)的过程。在溶液初始pH为6.0,生物炭投加量为10 mg,Cd(Ⅱ)质量浓度为10~150 mg/L的溶液25 mL,吸附时间为360 min,温度为25℃的最佳条件下,BC和MBC对Cd(Ⅱ)最大的吸附量分别为76.93 mg/g和167.42 mg/g。经过5次吸附解吸试验,MBC的Cd(Ⅱ)去除率保持在90%以上,BC的Cd(Ⅱ)去除率在55%左右,说明MBC具有更好应用于去除含Cd(Ⅱ)废水的能力。  相似文献   

3.
以城市污泥为原料制备出污泥基生物炭,并通过硝酸改性得到硝酸改性污泥基生物炭(SSB-AO),探究了SSB-AO投加量、溶液初始pH、离子强度、吸附时间、U(Ⅵ)初始质量浓度以及吸附温度等对SSB-AO去除U(Ⅵ)的影响,通过SEM-EDS、FTIR及XPS分析SSB-AO对U(Ⅵ)的去除机理。结果表明:SSB-AO对U(Ⅵ)的吸附符合拟二级动力学模型,吸附过程以化学吸附为主;等温吸附过程符合Langmuir模型。在30 ℃、NaNO3浓度为0.01 mol/L、吸附时间300 min、初始pH=6、U(Ⅵ)初始质量浓度为10~100 mg/L及SSB-AO投加量为0.6 g/L的条件下,SSB-AO去除U(Ⅵ)的理论最大吸附量为80.34 mg/g;通过5次吸附-解吸实验,其吸附率保持在88%以上,说明SSB-AO具有良好的重复使用性;SSB-AO去除U(Ⅵ)的机理为内表面络合作用、静电作用以及离子交换。研究显示硝酸处理污泥基生物炭能有效地提高其对U(Ⅵ)的吸附能力,为含U(Ⅵ)废水处理提供借鉴。  相似文献   

4.
以城市污泥为原料制备出污泥基生物炭(SSB),并通过硝酸酸化处理得到硝酸改性污泥基生物炭(SSB-AO),探究了SSB-AO投加量、溶液初始pH、离子强度、吸附时间、U(Ⅵ)初始质量浓度以及吸附温度对SSB-AO去除U(Ⅵ)的影响,通过SEM-EDS、FTIR及XPS分析SSB-AO对U(Ⅵ)的去除机理.结果表明:SSB-AO对U(Ⅵ)的吸附符合拟二级动力学模型,吸附过程以化学吸附为主;等温吸附过程符合Langmuir模型.在30℃、NaNO3浓度为0.01 mol/L、吸附时间300 min、初始pH=6、U(Ⅵ)初始质量浓度为10~100 mg/L及SSB-AO投加量为0.6 g/L的条件下,SSB-AO去除U(Ⅵ)的理论最大吸附量为80.34 mg/g;通过5次吸附-解吸实验,SSB-AO对U(Ⅵ)的去除率保持在88%以上,说明SSB-AO具有良好的重复使用性;SSB-AO去除U(Ⅵ)的机理为SSB-AO内层络合作用、静电作用以及离子交换.SSB-AO能有效地提高对U(Ⅵ)的吸附能力,该研究为处理含U(Ⅵ)废水提供借鉴.  相似文献   

5.
以污泥生物炭作吸附剂处理水中Cr(Ⅵ),研究了共存腐殖酸对生物炭吸附性能影响。结果表明,腐殖酸能显著促进生物炭对Cr(Ⅵ)的吸附,大幅提高吸附量以及缩短吸附平衡时间,生物炭吸附过程符合准二级动力学模型。在溶液初始pH4.0,生物炭浓度20g/L,Cr(Ⅵ)初始浓度在50~800mg/L范围下,Langmuir模型比Freundlich模型更好地描述等温吸附行为。加入腐殖酸(20mg/L)后,拟合得到的理论饱和吸附量达10.10mg/g,较未加入腐殖酸的吸附量5.56mg/g提高近1倍。在pH2.0~8.0范围内,吸附量随溶液初始pH值升高而减小。  相似文献   

6.
《应用化工》2022,(9):1922-1926
采用活性污泥联合聚丙烯酰吸附去除废水中镉离子,研究活性污泥投加量、溶液pH、温度、PAM投加量对去除镉的影响。结果表明,对于初始浓度100 mg/L的含镉溶液,活性污泥@PAM去除水中镉的最优条件为:污泥投加量0. 54 g,反应pH=5. 686,浓度0. 3%PAM溶液投加量为3. 017 m L,此时水中Cd的去除率可达97. 08%。等温吸附和吸附动力学实验表明,Langmuir等温吸附模型和二级反应动力学模型能够更好地描述镉离子在活性污泥@PAM体系中的吸附行为,表明吸附过程主要以单分子层吸附为主,受到化学吸附机理的控制。  相似文献   

7.
采用活性污泥联合聚丙烯酰吸附去除废水中镉离子,研究活性污泥投加量、溶液pH、温度、PAM投加量对去除镉的影响。结果表明,对于初始浓度100 mg/L的含镉溶液,活性污泥@PAM去除水中镉的最优条件为:污泥投加量0. 54 g,反应pH=5. 686,浓度0. 3%PAM溶液投加量为3. 017 m L,此时水中Cd的去除率可达97. 08%。等温吸附和吸附动力学实验表明,Langmuir等温吸附模型和二级反应动力学模型能够更好地描述镉离子在活性污泥@PAM体系中的吸附行为,表明吸附过程主要以单分子层吸附为主,受到化学吸附机理的控制。  相似文献   

8.
污泥基生物炭处理酸性含U(Ⅵ)废水的效能与机理   总被引:2,自引:0,他引:2       下载免费PDF全文
通过城市污泥(SS)慢速热解制备污泥基生物炭(SSB),并研究初始pH、投加量、共存离子、吸附时间和温度等因素对SSB去除U(Ⅵ)的影响,探讨吸附动力学和吸附等温线特征。通过元素分析、扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)和X射线光电子能谱(XPS)分析U(Ⅵ)吸附去除的机理。结果表明SSB去除U(Ⅵ)的适宜条件为:pH=3、投加量1 g/L、吸附时间240 min;在此条件下,在温度30℃时最大吸附量为34.51 mg/g。吸附动力学符合拟二级动力学模型;Langmuir吸附等温模型能更好描述生物炭对U(Ⅵ)的吸附行为。U(Ⅵ)吸附去除机理主要包括静电作用,与Si—O—Si的n-π相互作用,与羟基(—OH)、羧基(—COOH)的配位络合。通过5次吸附-解吸试验发现,U(Ⅵ)去除率和SSB再生率均在80%以上。本研究表明污泥基生物炭具备处理与修复酸性含U(Ⅵ)废水污染的潜力。  相似文献   

9.
以2种大同膨润土为脱色剂,通过其对阳离子黄X-8GL染料的脱色试验,探讨吸附时间、温度、膨润土的粒度、投加量、染料废水的初始p H、初始浓度对其脱色率和吸附量的影响,优化出最适宜的吸附条件,并研究其动力学和热力学。结果表明,在温度为25℃、染料初始pH=7的条件下,当膨润土投加量为0.5g·L~(-1)、阳离子黄浓度为50mg·L~(-1)时,1号和2号膨润土矿样对阳离子黄的脱色效果最好,其脱色率分别为94.85%、98.82%,吸附量分别为94.85mg·g~(-1)、98.82mg·g~(-1)。吸附更符合准二级动力学模型,与Langmuir吸附等温式的拟合性更好。吸附过程是自发的吸热反应,同时包含物理吸附和化学吸附,吸附后不易发生解析脱附。膨润土对X-8GL染料的脱色机理是表面吸附和离子交换吸附的共同作用。  相似文献   

10.
以给水污泥与稻壳为主要原料,添加适量的聚乙烯醇、磷酸和海泡石,通过真空热解方式制备一种悬浮颗粒吸附材料,并将其用于模拟废水中阿莫西林的去除。通过批量吸附试验考察了吸附剂投加量、溶液pH、污染物初始浓度及吸附时间等参数对吸附效果的影响,通过等温吸附模型和动力学模型研究其吸附行为,并利用BET、XRD、SEM-EDS及FTIR探究吸附机理。结果表明,在阿莫西林初始浓度为40 mg/L、颗粒吸附材料投加量为6 g/L、pH为8、吸附时间为90 min、温度为25℃的条件下,溶液中阿莫西林最大去除率为77.98%。等温吸附曲线和吸附动力学结果表明,该吸附过程与Langmiur等温吸附模型、准二级动力学模型的拟合较好,表明吸附材料对阿莫西林的吸附过程主要为单分子层的化学吸附。微观分析表明,吸附材料主要是通过吸附材料表面的羧基或醛基吸附废水中阿莫西林。  相似文献   

11.
利用凹凸棒土(ATP)和污水污泥(SS)慢速共热解制备污泥生物炭/凹凸棒土(SBC/ATP),并开展其对亚甲基蓝(MB)吸附性能的研究。通过扫描电镜、X射线衍射光谱、红外光谱、X射线光电子能谱等表征对污泥生物炭及其复合材料的微观形貌和理化性质进行了分析。探究了热解温度和原料配比对污泥生物炭/凹凸棒土吸附性能的影响,同时考察了吸附剂投加量、pH、MB溶液初始质量浓度及吸附时间等因素对MB去除率的影响。实验结果表明,500℃下制备的SBC/ATP((50%))在吸附剂投加量为1.2 g/L、pH=11、MB溶液初始质量浓度为100 mg/L、吸附时间为180 min时,吸附容量最大为53.74 mg/g。SBC/ATP((50%))对MB的吸附更符合Langmuir等温线模型和准二级动力学模型,说明该吸附过程主要为化学吸附控制的单分子层吸附。  相似文献   

12.
《应用化工》2022,(8):1892-1898
研究磁性水热炭对Pb(2+)的吸附,采用原子吸收光谱仪测定Pb(2+)的吸附,采用原子吸收光谱仪测定Pb(2+)的浓度,控制单因素变量法研究了投加量、pH、时间和初始离子浓度等对Pb(2+)的浓度,控制单因素变量法研究了投加量、pH、时间和初始离子浓度等对Pb(2+)的吸附研究。结果表明,在初始离子浓度50 mg/L,投加量为0.05 g、pH 5.0,温度30℃以及吸附时间2 h时,吸附去除率达到93.88%,吸附量为46.94 mg/g。用准二级动力学方程模拟实验数据,相关系数可达到0.999 9,吸附过程可用Langmuir吸附等温模型来描述,说明磁性水热炭对Pb(2+)的吸附研究。结果表明,在初始离子浓度50 mg/L,投加量为0.05 g、pH 5.0,温度30℃以及吸附时间2 h时,吸附去除率达到93.88%,吸附量为46.94 mg/g。用准二级动力学方程模拟实验数据,相关系数可达到0.999 9,吸附过程可用Langmuir吸附等温模型来描述,说明磁性水热炭对Pb(2+)的吸附过程为单分子层的化学吸附。  相似文献   

13.
以污泥热解半焦为吸附剂,研究其对模拟罗丹明B(RhB)染料废水的吸附行为。考察了吸附剂投加量、RhB溶液初始浓度、温度、pH对半焦吸附RhB结果的影响。结果表明,半焦投加量、温度及pH的升高均可提高RhB的去除率,SiO_2的骨架作用、较大的比表面积及良好的孔隙结构为吸附RhB提供了更多的吸附点位。随着RhB初始浓度的增加,更高的浓度差推动RhB分子由吸附剂表面向其内部迁移,提高了RhB的吸附量。准二级动力学模型和颗粒内扩散模型能较准确地描述吸附动力学过程。吸附平衡研究表明,Langmuir模型比Freundlich模型能更好地拟合吸附过程,最大饱和吸附量为46.51 mg/g。热力学计算结果显示,污泥热解半焦吸附水中RhB为自发的吸热过程。  相似文献   

14.
以污泥热解半焦为吸附剂,研究其对模拟罗丹明B(RhB)染料废水的吸附行为。考察了吸附剂投加量、RhB溶液初始浓度、温度、pH对半焦吸附RhB结果的影响。结果表明,半焦投加量、温度及pH的升高均可提高RhB的去除率,SiO_2的骨架作用、较大的比表面积及良好的孔隙结构为吸附RhB提供了更多的吸附点位。随着RhB初始浓度的增加,更高的浓度差推动RhB分子由吸附剂表面向其内部迁移,提高了RhB的吸附量。准二级动力学模型和颗粒内扩散模型能较准确地描述吸附动力学过程。吸附平衡研究表明,Langmuir模型比Freundlich模型能更好地拟合吸附过程,最大饱和吸附量为46.51 mg/g。热力学计算结果显示,污泥热解半焦吸附水中RhB为自发的吸热过程。  相似文献   

15.
生物炭/锰氧化物复合材料对苯甲酸的吸附研究   总被引:1,自引:0,他引:1  
以香蕉皮为原料,通过浸渍-焙烧的方法制备了生物炭/锰氧化物复合材料。研究了生物炭/锰氧化物复合材料吸附去除苯甲酸的工艺条件以及吸附等温线、动力学以及热力学过程。结果表明,在温度为25℃、溶液pH=4.0、苯甲酸底液质量浓度为100 mg/L、吸附剂投加量为2 g/L的条件下,生物炭/锰氧化物复合吸附剂对苯甲酸的去除率为94.76%。此外,生物炭/锰氧化物复合吸附剂对苯甲酸的等温吸附过程服从Langmuir模型,饱和吸附量为68.213 mg/g;吸附动力学过程服从准二级动力学方程;吸附热力学研究表明,该吸附过程能自发进行。  相似文献   

16.
以养殖底泥为原料,分别采用碱提酸解法和水热炭化法制备腐植酸和生物炭吸附剂,并以养殖水体中氨氮作为目标污染物,研究腐植酸和生物炭的氨氮吸附性能。结果表明:腐植酸和生物炭产率分别为3.86%和13.46%(以底泥湿基计),比表面积分别为11.54 m~2·g~(-1)和24.76 m~2·g~(-1)。准二级动力学方程能更好地拟合腐植酸和生物炭吸附氨氮的动力学特征。当腐植酸加量为2.00 g·L~(-1)、生物炭加量为3.00 g·L~(-1)时,其对氨氮的平衡吸附量增幅趋缓;当氨氮初始浓度分别增至150 mg·L~(-1)和200 mg·L~(-1)时,腐植酸和生物炭对氨氮的平衡吸附量增幅趋缓;生物炭比腐植酸表现出更强的吸附能力。该研究为养殖底泥的资源化利用及养殖废水的处理提供了参考。  相似文献   

17.
以污泥生物炭作吸附剂处理水中Cr(Ⅵ),研究了共存腐殖酸对生物炭吸附性能影响。结果表明,腐殖酸能显著促进生物炭对Cr(Ⅵ)的吸附,大幅提高吸附量以及缩短吸附平衡时间,生物炭吸附过程符合准二级动力学模型。在溶液初始pH 4.0,生物炭浓度20 g/L,Cr(Ⅵ)初始浓度在50~800 mg/L范围下,Langmuir模型比Freundlich模型更好地描述等温吸附行为。加入腐殖酸(20 mg/L)后,拟合得到的理论饱和吸附量达10.10 mg/g,较未加入腐殖酸的吸附量5.56 mg/g提高近1倍。在pH 2.0~8.0范围内,吸附量随溶液初始pH值升高而减小。腐殖酸浓度上升,生物炭吸附能力进一步提高。红外光谱显示,生物炭表面的羟基、羧基、酯基、芳香环上C-H和环状结构上的C-C等化学活性官能团与Cr(Ⅵ)的吸附有关。结合XPS分析结果,推断腐殖酸共存促进生物炭吸附的机制是:腐殖酸提高了Cr(Ⅵ)在生物炭表面聚集浓度,有利于生物炭对Cr(Ⅵ)的直接吸附和还原,而腐殖酸本身具有的吸附能力增加了对溶液中Cr(Ⅵ)和Cr(Ⅲ)的去除。  相似文献   

18.
以榴莲壳为原材料,制备了榴莲壳生物炭(biochar,BC),以磷酸为活化剂,在碳化温度为350℃、浸渍比为2.5∶1(磷酸∶生物质,质量比)的条件下,制备了活化榴莲壳生物炭(activated durian shell biochar,DBC),并探究二者对磺胺嘧啶(sulfadiazine,SDZ)的吸附作用。通过单因素实验探究了DBC投加量、溶液pH、初始浓度、吸附温度对水中SDZ的去除影响,并用正交实验确定了DBC对SDZ吸附的最优条件。在生物炭的投加量为1.2g/L、SDZ初始浓度为10mg/L、溶液pH为4时,SDZ最大去除率最高。利用吸附等温模型(Langmuir、Freundlich)和吸附动力学模型(准一级动力学、准二级动力学),探究DBC对SDZ的吸附特性,并进行了比表面积及孔径分析、扫描电镜(SEM)、傅里叶红外光谱(FTIR)的表征分析。结果表明,与BC相比,DBC有丰富的微孔结构,比表面积达1224.635m2/g,含氧官能团数量增加,为SDZ的吸附提供了更多的吸附位点,同时Langmuir吸附等温模型可以较好地描述DBC对SDZ的吸附等温过程,吸附动力学过程更符合准二级动力学方程。因此,磷酸活化榴莲壳生物炭可以作为一种高效的吸附剂去除水中的磺胺嘧啶。  相似文献   

19.
选用水生植物为生物质原料在不同热解温度下(300、500、700℃)制备生物炭,分析3种生物炭理化性质差异,研究吸附影响因子对生物炭吸附Cd~(2+)的影响以及吸附机理。结果表明,随着热解温度的升高,官能团数量减少,灰分增加,pH增大。3种生物炭的吸附过程可用Langmuir等温线较好的拟合,饱和吸附量B500B700B300。吸附动力学过程符合准2级动力学方程,说明以化学吸附为主。pH在2~6时,生物炭的吸附量随pH增加而增大。随着投加量的增加平衡吸附量减小,去除率增大。水生植物生物炭去除Cd~(2+)的机理可能是阳离子-π作用、离子交换、沉淀、络合反应。水生植物生物炭是一种能有效去除水中Cd~(2+)的吸附剂。  相似文献   

20.
为研究给水厂含铝污泥对水中磷的吸附特性,考察了污泥投加量、p H、磷初始浓度、污泥粒径、吸附时间以及温度等因素对除磷效果的影响。结果表明,在污泥投加量为15 g/L,p H为2~10,磷初始质量浓度为10 mg/L,污泥粒径为0.15~0.3 mm,吸附100 min时,除磷效果最好,磷去除率为90.93%,吸附量为0.60 mg/g。磷吸附量与磷初始浓度成线性关系,并且温度越高,吸附量越大。给水厂含铝污泥对磷的吸附动力学符合Lagergren准二级动力学模型,吸附数据与采用Langmuir等温吸附模型得出的计算值吻合很好,且吸附反应为吸热反应,能自发进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号