首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
针对钻孔内瓦斯流动变质量流的特点及钻孔变形情况,建立了综合考虑钻孔负压动态变化的瓦斯抽采固-流耦合模型,并以新安煤矿为例,采用多物理场耦合软件Comsol Multiphysics对钻孔不同变形失稳时抽采负压分布进行了数值模拟研究。结果表明:①完整孔孔口、孔底附近煤层瓦斯分布基本相同,抽采负压损失较小。②钻孔塌孔时,仅塌孔段附近煤层瓦斯分布与完整孔稍有不同,总负压损失比完整孔大,但与孔口负压相比仍较小。③钻孔堵孔时,孔口、孔底周围煤层瓦斯分布差异巨大,钻孔有效抽采长度缩短,堵孔段附近煤层出现抽采空白带;完整段抽采压力变化相对较小且仍为负压,堵孔段抽采压力变成正值,且越靠近钻孔底部越接近附近煤层瓦斯压力。现场测试结果表明完整孔抽采负压损失较小,且随抽采时间的延长而变小,与数值模拟结果一致。  相似文献   

2.
瓦斯抽采钻孔孔周裂隙和封孔段空隙通道是造成钻孔漏气失效的主要原因。为有效检测钻孔漏气通道,基于管流流体力学理论和漏气检测判别方法,研制了瓦斯抽采钻孔漏气通道检测装置。通过检测不同钻孔深度气样参数并分析其分布规律和突变情况,确定抽采钻孔失效原因和漏气通道位置;检测装置采用高稳压阻式压力传感器、激光甲烷传感器和荧光氧气传感器实现抽采负压、瓦斯浓度和氧气浓度检测,并采用1.5 m/节快接式25 mm薄壁不锈钢管作为取气管件,钻孔检测深度达30 m。现场应用结果表明,抽采管段检测参数变化稳定,说明抽采管未发生破损或接口漏气等,抽采管密封效果较好;在封孔段,距孔口9~18 m范围内存在多处不同程度的突变点,最大漏气通道在距孔口9~12 m范围内,说明原封孔深度不足,原封孔工艺无法有效密封漏气通道。将封孔深度增加至12 m,并采用“两堵一注”带压注浆封孔工艺,进行对比试验,结果表明,改进后试验钻孔整体抽采效果大幅改善,孔口瓦斯体积分数提升至55%以上,在距孔口12 m以深范围内瓦斯体积分数变化稳定,氧气体积分数近乎为0,漏气通道减少。试验结果验证了瓦斯抽采钻孔漏气通道检测装置能够有效检测漏气通道,为有针对性地调整封孔方式和相关参数及后续改进工作提供依据。  相似文献   

3.
为确定平行钻孔瓦斯抽采合理钻孔间距,通过推导煤层瓦斯运移方程、煤岩体变形方程及渗流场与应力场耦合方程,建立了瓦斯抽采流固耦合模型;根据某矿21219工作面实际地质条件,利用COMSOL Multiphysics软件对平行钻孔间抽采叠加效应影响下瓦斯压力、有效抽采半径的变化规律进行了数值模拟研究,并结合钻孔有效抽采半径,得出了合理的钻孔间距。数值模拟结果表明,随着钻孔间距的增大,抽采后煤体瓦斯压力增大;随着煤体距钻孔距离减小,煤体瓦斯压力呈先缓慢减小、后快速下降的趋势;随着抽采时间的增加,瓦斯压力不断降低,钻孔有效抽采半径变大。现场应用结果验证了钻孔间距布置的合理性。  相似文献   

4.
为解决含夹矸煤层瓦斯抽采钻孔的合理布置问题,通过建立瓦斯抽采的煤岩体变形控制方程、瓦斯运移控制方程和孔隙率与渗透率演化方程,结合瓦斯抽采的初始及边界条件,推导出了瓦斯抽采固气耦合模型。利用多物理场分析软件COMSOL Multiphysics,并结合某矿IV13煤层的实际地质条件,对煤层单一抽采钻孔周围煤体的瓦斯压力、渗透率、位移的分布规律进行了数值模拟与分析,确定了含夹矸煤层瓦斯抽采钻孔的孔间距,从而为含夹矸煤层抽采钻孔的优化布置提供了依据。研究结果表明,在瓦斯抽采过程中,随着煤体距钻孔距离的减小,煤层不含夹矸时钻孔周围煤体瓦斯压力下降幅度、渗透率上升幅度最小,钻孔周围煤体位移量最大;钻孔未穿过夹矸时钻孔周围煤体瓦斯压力下降幅度、渗透率上升幅度最大,钻孔周围煤体位移量最小。  相似文献   

5.
针对采用单一顺层普通钻孔或定向钻孔预抽煤巷条带瓦斯时存在普通钻机施工长钻孔易偏离轨迹、定向钻机施工成本较高等问题,以青龙煤矿21601掘进工作面为研究背景,提出了采用普通钻孔和定向钻孔联合预抽煤巷条带瓦斯。数值模拟结果表明:单钻孔预抽瓦斯时,抽采初期钻孔终孔位置处钻孔轴向瓦斯压力等值线呈“V”形分布,随着抽采时间延长,瓦斯压力“V”形分布逐渐平滑;钻孔径向瓦斯压力以钻孔为中心呈环状依次向外递增;预抽93 d时的有效抽采半径达3.80 m;普通钻孔和定向钻孔可分别有效控制煤巷两帮15 m和煤巷掘进工作面前方200 m范围内瓦斯。现场应用结果表明:普通钻孔和定向钻孔联合预抽时,瓦斯抽采总量平均值为19.86×10^3 m^3,瓦斯抽采体积分数平均值为53.5%,瓦斯抽采纯流量平均值为1.97 m^3/min,瓦斯抽采混合流量平均值为3.68 m^3/min,残余瓦斯含量小于8 m^3/t,瓦斯抽采效果良好。  相似文献   

6.
《工矿自动化》2019,(11):49-54
复杂地质矿区水文地质条件较复杂,岩层孔/裂隙较发育,若采用的封孔工艺不合理,将导致煤层瓦斯压力测定结果不能准确反映煤层瓦斯实际情况的现象。针对上述问题,在贵州久益矿业股份有限公司宏宇煤矿5,6-1号煤层布置4组测压点、12个测压钻孔,每组测压点钻孔分别采用目前常用的注浆封孔、短胶囊+注浆封孔、长胶囊-压力黏液封孔3种封孔工艺进行瓦斯压力测定试验。根据试验结果分析了3种封孔工艺的应用效果,得出3种封孔工艺的适用条件:注浆封孔工艺适用于较深、岩石较细密且较坚硬的岩孔;短胶囊+注浆封孔工艺适用于倾角较大的下向钻孔;长胶囊-压力黏液封孔工艺适用于煤层顶底板岩石破碎或可能存在含水层处钻孔。  相似文献   

7.
针对长平煤矿3号煤层低透气性的特征,通过改进封孔工艺,采用聚氨酯-膨胀水泥二次封孔方式,利用孔压法对该矿顺层钻孔瓦斯有效抽放半径进行了测定分析,准确测出了该矿顺层钻孔的有效抽放半径为2.5m,避免了瓦斯抽放过程中可能出现的空白区和串孔、塌孔现象,为该矿瓦斯抽放钻孔的施工布置提供重要依据。  相似文献   

8.
针对常规顶板高位钻孔因钻孔方位及倾角无法控制而难以钻进至设计层位,且有效抽采孔段较短、易出现抽采盲区、抽采不连续等问题,以王家岭煤矿上隅角瓦斯治理为研究背景,在20103综采工作面回风巷布置1组定向高位长钻孔与4组常规高位钻孔进行瓦斯抽采,对比分析了这2种高位钻孔的瓦斯抽采效果,结果表明:定向高位长钻孔有效抽采孔段长,抽采盲区少,能实现连续抽采;定向高位长钻孔单孔平均瓦斯抽采纯量为2.11m^3/min,最大可达2.9m^3/min,与常规高位钻孔相比平均瓦斯抽采纯量提高了约2.77倍,工作面瓦斯抽采率提高了近2倍,有效抽采时间提高了约3.15倍;仅接抽常规高位钻孔时上隅角瓦斯体积分数为1.0%以上,仅接抽定向高位长钻孔时降至0.6%以下,表明定向高位长钻孔治理工作面上隅角瓦斯具有明显优势。  相似文献   

9.
倪兴 《工矿自动化》2023,(1):146-152
针对低透高瓦斯煤层在水力割缝过程中存在割缝扰动范围不清、割缝钻孔最佳布孔间距不明确的问题,以贵州豫能高山煤矿1908工作面为研究背景,在建立水力割缝煤体瓦斯抽采流固耦合模型的基础上,借助COMSOL数值模拟软件对高山煤矿1908工作面水力割缝钻孔有效抽采半径、孔周瓦斯压力变化情况进行了研究,并依据模拟结果深入分析了水力割缝钻孔在多孔布置时,受孔间抽采叠加效应影响下有效抽采范围及孔间瓦斯压力变化情况,最终得出其最佳布孔间距及抽采时间。结果表明:(1)水力割缝钻孔单孔抽采效果随割缝深度显著提升,但钻孔有效抽采半径增速变缓,为得到最佳割缝深度,对各钻孔有效抽采半径进行三项式拟合,随着水力割缝深度的增加,有效抽采半径范围在快速增加后放缓且最终趋于平稳,并得出了高山煤矿最佳割缝深度为1.5 m,有效抽采半径达为3.1 m。(2)在相同抽采时间下,煤体内瓦斯压力随两孔距的缩短而降低,说明孔间距越小,孔间受水力割缝所造成的扰动越剧烈,抽采叠加效应影响越显著。(3)在保证消突达标的前提下,选择孔距为7 m进行水力割缝钻孔布置效果最佳。(4)原本在“正方形”布孔方式中,孔心位置可能出现抽采盲区的点最大瓦...  相似文献   

10.
为解决试验矿井采用传统抽采技术存在巷道掘进速度慢、采掘接替紧张的问题,提出采用深孔定向钻进瓦斯抽采技术施工定向长钻孔替代常规钻孔进行煤层瓦斯抽采的方案。定向钻进对煤层有效作用面积大,可以大范围改变煤体原始应力的分布,从而打破煤层瓦斯吸附-解吸的动态平衡,使大量吸附态瓦斯转化为游离态;在钻孔负压与煤体地应力和瓦斯压力形成的压力梯度作用下,游离态瓦斯源源不断地流向钻孔空间,使周围煤体瓦斯得到有效排放,煤体发生收缩变形,透气性系数大幅增加,地应力与瓦斯压力梯度减小,从而使得定向长钻孔抽采影响范围扩大,实现煤层瓦斯大面积有效抽采。试验结果表明:采用深孔定向钻进技术施工定向长钻孔成孔良好,试验钻孔总进尺为2 213m,主孔最大孔深达523m,日均抽采纯量为3 528m~3;钻孔平均瓦斯抽采体积分数高达88.3%,最高为98.0%;单孔平均瓦斯抽采纯量为1.23m~3/min,最大超过2m~3/min,瓦斯抽采效果显著;与常规钻孔抽采相比,定向钻孔单孔瓦斯抽采纯量提高了16倍多,单孔瓦斯抽采体积分数提高了2~4倍,巷道月均进尺提高了1倍多。  相似文献   

11.
当前不少研究均得出煤层赋存原生CO气体的结论,但是未考虑钻孔施工过程中产生CO后被煤体吸附的可能。为探究西北地区易自燃煤层是否存在原生CO的问题,采用原始煤层原位钻孔探测方法进行原生CO探测试验。在未受采动影响的实体煤区域沿巷帮一字排开布置3个测试钻孔,钻孔密封后采用高纯N2置换密闭气室内气体,采用专用抽气泵抽取钻孔内气体,消除原位探测钻孔施工过程中煤体氧化产生CO对试验结果的影响。在分析煤层原生CO来源可能性及其涌出理论的基础上,探讨了密闭钻孔内气体浓度随时间变化特征,结果表明:密封后钻孔内O2和CO体积分数随密封时间的延长而迅速降低,12 d后O2体积分数稳定在2%以下;12 d后CO体积分数低于10-12,气相色谱仪未检测到CO气体;钻孔内气体主要为N2。由此推断,待测煤层中无原生CO气体。N2环境破煤试验和煤样常温恒温氧化试验结果表明,封孔初期检出的CO气体来源于钻孔施工破煤作业。  相似文献   

12.
针对目前水力冲孔技术研究较少考虑倾斜煤层水力冲孔卸压范围随方向变化的特点及煤层倾角对水力冲孔卸压有效半径影响的问题,以某煤矿3号煤层为研究对象,利用多物理场耦合数值模拟软件COMSOL Multiphysics对倾斜煤层水力冲孔有效影响半径进行了数值模拟,研究了不同方向上的钻孔有效抽采半径。数值模拟结果表明:在冲孔作用下,抽采影响范围随抽采时间的增加而不断扩大,但扩展速度随时间下降;在冲孔卸压作用下,煤层渗透性大大增加,钻孔周边影响范围呈近似椭圆形分布;连续抽采90 d后,上部方向的影响半径为6 m左右,下部方向的影响半径为4 m左右,水平方向的影响半径为5 m左右;为了确保抽采达标,该煤层水力冲孔钻场横向钻孔布置间距设定为3.5 m左右,纵向钻孔布置间距为4.0 m左右。该研究结果对于优化水力冲孔工艺参数、指导抽采钻孔的准确布置、提升矿井的瓦斯治理效果具有重要的现实意义。  相似文献   

13.
针对临涣煤矿存在瓦斯抽采率低、打钻数量过多且瓦斯抽采周期短的问题,提出了采用穿层钻孔实施水力压裂工艺的方法。实验结果表明,临涣煤矿实验区瓦斯标况纯量平均提高了19倍,瓦斯抽采周期延长了3倍多,说明此次井下水力压裂实验基本形成了适用于临涣煤矿矿井的穿层钻孔水力压裂工艺,该煤矿适宜通过水力压裂卸压增透,减少打钻钻孔数量。  相似文献   

14.
针对顶底板承压水大、裂隙发育的煤层,提出了一种采用双套管带压注浆技术联合M-Ⅱ瓦斯压力测定仪的封孔测压工艺。该工艺采用套管避免围岩孔壁坍塌影响;采用高压注浆充填围岩裂隙、隔绝瓦斯泄漏通道;采用M-Ⅱ瓦斯压力测定仪测得准确、可靠的瓦斯压力数据。应用该工艺对某煤层进行的瓦斯压力测定试验结果表明,该工艺彻底填充了钻孔围岩裂隙、含水通道,使得测压钻孔坚固、稳定,排除了承压水对测压结果的干扰,并解除了由于钻孔垮塌对封孔测压方式适用的限制,可以准确测得煤层瓦斯压力。  相似文献   

15.
段会军 《工矿自动化》2020,46(2):1-5,38
针对传统单一的上隅角瓦斯治理技术不能有效解决高强度开采综放工作面上隅角瓦斯严重超限的问题,以王家岭煤矿为工程背景,提出了利用上隅角插(埋)管和高位定向钻孔对瓦斯进行联合抽采方案。上隅角插(埋)管抽采即在工作面回风巷铺设瓦斯抽采管路,管路沿回风巷走向延伸至上隅角,在管口位置形成稳定负压区抽采上隅角瓦斯,通过抽吸作用形成人工风流,扰动上隅角位置的回旋涡流,降低瓦斯浓度。同时在工作面回风巷开掘钻场,施工高位定向钻孔向工作面切眼方向钻进,通过定向钻进技术使钻孔轨迹在采空区裂隙带内延伸,抽采采空区高浓度瓦斯。应用结果表明,上隅角插(埋)管和高位定向钻孔联合抽采后,瓦斯抽采纯量稳定在3.40~6.20 m 3/min,平均为4.91 m 3/min;工作面上隅角瓦斯体积分数呈阶梯式下降,最终稳定在0.30%~0.52%,平均为0.42%,上隅角瓦斯治理效果显著。  相似文献   

16.
薛湖煤矿二2煤层瓦斯含量高、透气性差,采用顺层钻孔治理煤层瓦斯存在瓦斯抽采效果差、抽采达标时间长等问题,将超高压水力割缝技术应用于该煤层钻孔瓦斯抽采中。通过单因素试验确定了适用于薛湖煤矿二2煤层的超高压水力割缝优化工艺参数:割缝压力为60~70 MPa,割缝时间为25 min,割缝转速为80 r/min,割缝间距为2 m。现场应用采用该工艺参数的超高压水力割缝技术后,割缝钻孔与普通钻孔相比,前者日均瓦斯抽采体积分数约为后者的1.75倍,日均瓦斯抽采纯量为后者的3.25倍,瓦斯抽采达标时间缩短了约42%,残余瓦斯含量小。  相似文献   

17.
The aim of this study was to investigate the effect of operating parameters such as liquid flow rate, gas inlet pressure, and capillary diameter as well as the influence of the physical properties of the liquid, in particular viscosity, on the generation of monodisperse microbubbles in a circular cross section T-junction device. Aqueous glycerol solutions with viscosities ranging from 1- to 100 mPa s were used in the experiments. The bubble diameter generated was studied for systematically varied combinations of gas inlet pressure, liquid flow rate, and liquid viscosity with a fixed capillary inner diameter of 150 μm for the liquid and gas inlet channels as well as the outlet channel. In addition, the effect of channel geometry on bubble size was studied using capillaries with inner diameters of first 100 and then 200 μm. In all the experiments the distance between the coaxial capillaries at the junction was set to be 200 μm. All the microbubbles produced in this study were highly monodisperse (polydispersity index <1 %) and it was found, as expected, that bubble formation and size were influenced by the ratio of liquid to gas flow rate, capillary size, and liquid viscosity. The experimental data were then compared with empirical scaling laws derived for rectangular cross-section junctions. In contrast with these previous studies, which have found bubble size to be dependent on either the flow rate ratio (the squeezing regime) or capillary number (the dripping regime), in this experimental study bubble size was found to depend on both capillary number and flow ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号