首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 62 毫秒
1.
范加锋 《工矿自动化》2023,(2):102-108+124
煤层顶板布置低位巷抽采瓦斯是解决工作面上隅角瓦斯超限问题的重要技术措施,但低位巷大流量混合抽采造成采空区漏风严重,增加遗煤自燃风险。目前针对低位巷布置与抽采流量协同影响采空区遗煤自燃方面的研究较少。针对贾家沟煤矿10106工作面布置低位巷抽采采空区瓦斯的实际情况,采用COMSOL软件建立了非均质采空区三维流-固-热多场耦合数值模型,通过数值模拟分析了低位巷抽采瓦斯诱导采空区遗煤自燃规律,结果表明:低位巷瓦斯抽采能够降低工作面上隅角瓦斯浓度;瓦斯抽采流量与自燃氧化带最大宽度、采空区最高温度呈正比,抽采流量增加,则自燃氧化带最大宽度和采空区最高温度增加,但过高的抽采压力导致上隅角附近空气“回流”至采空区,增加采空区遗煤自燃风险;当低位巷瓦斯抽采流量一定时,内错距越小,则采空区自燃氧化带最大宽度和最高温度越大。结合数值模拟结果与工程实践,确定贾家沟煤矿低位巷内错距为15 m,瓦斯抽采流量为45 m3/min,此时上隅角瓦斯体积分数为0.875%,采空区自燃氧化带最大宽度为59.14 m,有效解决了上隅角瓦斯浓度超限问题,且未显著增大采空区遗煤自燃危险区域。  相似文献   

2.
针对采用理论分析及实验研究的方法研究高地温对采空区煤自燃的影响难以全面反映采空区煤自燃O_2浓度场分布情况的问题,采用Fluent数值模拟软件对高地温矿井采空区及进风侧、回风侧和采空区中段O_2浓度场分布规律进行了研究。结果表明:(1)在通风量相同情况下,温度从24.8℃升高到40℃时,O_2随着风流向整个采空区渗入,O_2浓度随采空区深度增加而减小;在温度相同情况下,当风量从1 800m3/min增大到2 700m3/min时,采空区漏风范围大幅度提升,采空区O_2浓度场变化明显,O_2几乎充满整个采空区,并且高浓度O_2存在范围增大,此时由于热量积聚导致采空区温度升高,采空区内部遗煤温度也持续增加,煤氧复合作用加快,遗煤自燃的可能性增大。(2)随着采空区距工作面距离增大,O_2浓度减小,进风侧O_2浓度大于回风侧O_2浓度,表明进风侧煤自燃危险性大于回风侧。(3)随着采空区深度增加,进风侧与采空区中段O_2体积分数持续减小,曲线斜率呈先增大后减小趋势;回风侧O_2体积分数随采空区深度增加呈减小趋势;大量高浓度O_2存在于采空区150m之前,整个采空区进风侧与采空区中段煤自燃危险性均大于回风侧。(4)当温度为40℃、通风量为2 700m3/min时,氧化带最大宽度为131m,将该最大宽度视为开采最大理论宽度,进一步计算安全推进速度,可为煤矿开采提供理论依据。  相似文献   

3.
西部矿区浅埋厚煤层通常采用抽出式通风方式,地表漏风不仅使风流紊乱,而且其中的O 2贯穿采空区,与采空区遗煤共同作用使其氧化,从而发生煤自燃,并且产生的CO等有害气体超标,严重影响矿井的正常开采。目前一般采用现场实测、理论分析及实验研究方法对地面漏风引起的采空区内煤自燃的气体浓度场和温度场等进行研究,然而地表裂隙漏风自然发火实验复杂程度较高,理论分析及实验研究方法难以从三维角度认识地表漏风对采空区内煤自燃的影响规律。针对上述问题,根据我国西北矿区埋深浅、煤层厚等特点,建立三维数值计算模型,采用数值模拟与现场实测相结合的方法研究了浅埋厚煤层条件下导气裂隙采空区“三带”分布情况及不同工况下采空区O 2浓度场、CO浓度场、温度场、压力场等的分布规律,并采用ZD5煤矿火灾多参数监测装置进行现场验证。结果表明:采空区内“三带”分布规律和O 2浓度场分布受地表漏风影响明显,采空区顶部O 2容易聚集,改变了采空区内气体流场分布规律,采空区内高体积分数O 2(体积分数为18%~23%)聚集范围为沿采空区走向0~270 m、沿采空区竖直方向3~20 m,特别是在沿采空区走向0~80 m、沿采空区竖直方向3~8 m空间O 2充足、有一定遗煤且热量不容易散失,该区域煤自然发火危险程度较高;采空区内回风隅角压力最小,为-10 Pa,回风口压力最低,进风口压力最大,沿倾向、竖直方向及走向压力均逐渐增大;采空区内温度和CO分布规律类似,在采空区底部受顶部漏风影响很小,主要受工作面进风隅角影响,热量积聚和CO聚集规律与不漏风时基本一致,而从采空区中部开始,温度和CO主要受顶部漏风影响,在中部区域温度和CO均呈现“O”形圈分布,采空区顶部,温度和CO在每个断裂带与采空区交接处达到极大值,并向两侧递减,在最深部的断裂带与采空区交接处出现最大值。  相似文献   

4.
钻孔抽采能够影响采空区内部风流的运动,从而导致采空区流场发生变化,增加工作面向采空区的漏风,同时钻孔周围呈现负压状态,漏风风流也不断向钻孔周围补充,采空区煤体在漏风集中区域呈现氧化升温状态,存在采空区遗煤自燃问题。针对上述问题,研究了钻孔抽采条件下采空区最优注氮防灭火方案。以白龙山煤矿10201工作面为背景,用数值模拟软件对工作面采空区进行仿真,分析了不同抽采参数下的采空区流场和温度场分布,依据合理钻孔参数确定了最优注氮条件。结果表明:抽采负压为30kPa时瓦斯抽采效果良好,氧化升温带增幅相对较低;钻孔间距为6m时抽采效果佳且工程量较小;进风侧注氮口与工作面距离为75m、注氮流量为1 500m^3/h时,可以很好地缩小氧化升温带宽度并节约成本。实际应用结果表明:综放工作面及上隅角瓦斯体积分数得到了有效控制,均低于1%;抽采管路及上隅角CO体积分数分别低于0.040%,0.032%,采空区煤体未发生自燃,采空区瓦斯抽采和注氮取得了良好的应用效果。  相似文献   

5.
根据煤自燃过程中各个阶段产生的不同标志性气体的特点,采用气相色谱仪对某矿采空区气样进行定性和定量分析,依据标志性气体的成分及含量变化情况预测采空区的煤自燃发火状况,为提前采取针对性的预防措施奠定了基础。  相似文献   

6.
邢震 《工矿自动化》2020,46(3):6-11,20
针对目前采空区瓦斯与煤自燃共同致灾数值模拟仅考虑流体影响、未考虑其他物理场影响的问题,采用Comsol-Multiphysics多场耦合数值模拟软件建立了采空区瓦斯与煤自燃耦合模型,分析工作面采场与采空区瓦斯和O2分布规律,探讨抽采量和进风量对高位抽采巷道瓦斯浓度和采空区底板O2浓度的影响,并综合确定最佳抽采量和进风量。结果表明:随着抽采量的增大,瓦斯抽采浓度先增大后减小,采空区氧化升温带宽度呈正相关增长,综合考虑瓦斯抽采效果与自然发火防治,建议高位抽采巷道最佳抽采量为90m^3/min;随着进风量的增大,高位抽采巷道瓦斯浓度和纯量先增大后减小,采空区进风侧氧化升温带宽度明显增大,最大时达到109.3m,而回风侧氧化升温带宽度变化幅度很小,综合考虑瓦斯抽采效果与自然发火防治,试验工作面最优进风量为1 500m^3/min。  相似文献   

7.
目前的爆破卸压防治措施仅针对煤层顶板,对顶板-煤体-底板三协同爆破卸压治理研究较少,特别对坚硬厚层砂岩顶板覆层区域的冲击灾害防治研究更少。针对上述问题,以江苏徐矿能源股份有限公司张双楼煤矿74101工作面为工程背景,从开采布局、煤岩冲击倾向性、砂岩覆层区应力集中程度方面分析了其冲击灾害诱发因素,揭示了煤岩体突然失稳破坏诱发冲击灾害的原因,认为顶板砂岩覆层异常、断层地质构造、底板坚硬细砂岩等地质条件造成局部高应力集中是诱发冲击灾害的主要原因。采用矿震震动波CT反演技术精准探测得到74101工作面强冲击危险区:运输巷侧沿巷道75 m,延伸工作面60 m椭圆形区域;轨道巷侧沿巷道60 m,延伸工作面80 m椭圆形区域。针对划分的高应力集中区,提出了精准的“顶板-煤体-底板”一体化爆破卸压技术,对74101工作面冲击危险区域进行卸压防冲,并采用微震监测手段及现场观测对卸压防冲效果进行评价。结果表明:爆破卸压后,74101工作面厚硬砂岩覆层区矿震日累计能量由1.57×104 J降低至104 J以下,震动频次降低50%,矿震活动呈现低能量、低频次的特征,冲击危险性显著降低,验证了一体化爆破卸压技术适用于张双楼煤矿厚硬砂岩覆层区冲击动力灾害防治。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号