首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用简易的草酸盐共沉淀方法,结合后续混锂焙烧制备了锂离子电池0.5Li2MnO3·0.5LiCo0.5Mn0.5O2富锂锰基正极材料。利用X射线衍射、场发射扫描电镜、透射电镜、X射线光电子能谱仪、激光粒度分析仪和振实密度仪等测试表征了所制备材料的物相、形貌、元素价态和粒度分布。利用充放电测试仪对材料的电化学性能进行了测试。结果表明:在低搅拌转速条件下共沉淀法制备的样品呈规则球状形貌,球体是由许多棒状一次粒子聚集而成;在高搅拌转速条件下,所制备出的样品呈现较为分散的棒状形貌。低搅拌转速下所制备的球状颗粒样品展现出了更高的振实密度(1.7 g/cm3)和更优异的电化学性能:0.2 C倍率条件下首次放电比容量为233.8 mA·h/g,2 C/0.2 C放电比容量比值为62.2%,0.5 C循环100次容量保持率为90.8%,倍率性能和循环稳定性能优异。  相似文献   

2.
富锂锰基材料xLi_2MnO_3·(1-x)LiMO_2具有高的放电比容量,是下一代高比能量电池的优选正极材料。文章总结了富锂锰基正极材料存在的问题,介绍了富锂锰基正极材料的改性研究进展,展望了富锂锰基正极材料的应用和发展方向。  相似文献   

3.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_5,重点探索了溶液p H对材料物理和电化学性能的影响。其中pH=6.0时制备的材料具有最高的放电比容量、最好的倍率和循环性能。在3 C充放电电流下材料的最高放电比容量为104.2 m Ah·g~(-1),循环200次的放电比容量为95.1 mAh·g~(-1)。  相似文献   

4.
近年来随着电动汽车等高功率密度、高比能量的极大需求,传统的正极材料已经不能满足这些要求。且由于LiNi_(0.5)Mn_(1.5)O_4具有高电压和高能量密度等优点,该材料的研究也逐渐增多,在此基础上文章阐述了LiNi_(0.5)Mn_(1.5)O_4材料合成方法的研究进展。不同制备方法得到的材料电化学性能也有所差异,根据所需产品的性能采用相应的制备方法并对其进行改进也是今后研究的重要课题。  相似文献   

5.
通过分级共沉淀(分级进料)方法,结合高温热处理合成了金属元素(Ni,Mn)浓度从中心到表面呈梯度分布(中心富Ni,表面富Mn)的球形三元正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2。利用X射线衍射(XRD)、场发射扫描电镜(FESEM)、能谱仪(EDS)和电感耦合等离子质谱仪(ICP-MS)等表征了所制备材料的成分、形貌和元素分布。通过恒流充放电和循环伏安、交流阻抗等方法对材料的电化学性能进行测试。结果表明,与传统的一级共沉淀方法相比,分级共沉淀所制备材料展现出更高的倍率性能(20 C放电比容量为104.1 m Ah·g~(-1))、循环保持率(0.5 C循环200次容量保持率为95.8%)和快速充放电性能(20 C/20 C放电比容量为85.4 m Ah·g~(-1))。这种分级进料制备技术可以有效提高共沉淀法制备锂离子电池三元正极材料的电化学性能。  相似文献   

6.
利用固相反应热结晶的方法合成尖晶石型复合金属氧化物Li_2Mn_(0.5)Ti_(0.5)O_3。具有尖晶石型结构的氧化物,可以在嵌入替代离子改变自身氧和锂化学计量数的同时,维持晶体结构的稳定性。这种特性能够用于离子交换研究,用来满足提取锂的需求。采用X-射线衍射方法、原子吸收检测法、Kd值检测等方法对所合成的复合金属氧化物进行锂离子脱嵌性能测试。实验分析表明,离子交换机理是实现锂离子脱嵌的主要原因,硝酸浸出锂离子后的实验样品对锂离子的交换能力高达6.2 mmol/g。  相似文献   

7.
以Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体和Li_2CO_3为原料,在空气气氛下采用适当的烧结工艺制备了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极材料。采用振实密度仪、SEM和XRD等方法对材料烧结前后的密度、形貌与结构进行表征,并对烧结后的锂离子电池正极材料的电化学性能进行测试。结果表明烧结制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料混排因子c/a为4.9421,阳离子混排程度低I(003)/I(104)为2.222,层状结构明显。在2.8~4.3 V、0.2 C和0.5 C下,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的首次放电比容量为153.6 m Ah·g~(-1)和146.5 mAh·g~(-1),首次充放电效率分别为81.2%和78.8%,循环80次后容量分别保持为130.2 mAh·g~(-1)和128.1 mAh·g~(-1),容量保持率都在85%以上,具有良好的电化学性能。  相似文献   

8.
采用碳酸盐沉淀法制备材料Li1.2Mn0.55Ni0.15Mg0.1O2,并对材料的结构、形貌以及电化学特征进行了测试。XRD测试和扫描电镜测试结果表明该材料具有良好的层状结构和形貌特征,电化学测试表明材料具有良好的充放电性能,循环性能,倍率性能等。  相似文献   

9.
采用共沉淀-高温固相合成法制备锂离子电池正极材料Li_(1.2)Ni_(0.2-x/2)Mn_(0.6-x/2)Cr_xO_2(x=0,0.04,0.08,0.12)。利用X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试和电化学交流阻抗谱(EIS)对掺杂不同Cr含量的正极材料的结构、形貌和电化学性能进行分析测试。结果表明:制备出的Li_(1.2)Ni_(0.2-x/2)Mn_(0.6-x/2)Cr_xO_2正极材料均具备层状固溶体结构。Cr掺杂不会改变材料的结构,而且能够有效抑制循环过程中材料由层状向尖晶石结构转变的过程。当Cr的掺杂量为8%(即x=0.08)时,得到的正极材料Li_(1.2)Ni_(0.16)Mn_(0.56)Cr_(0.08)O_2具有最好的电化学性能。0.1C的首次放电比容量由未掺杂的230.4 mA·h·g~(-1)增加到246.6 mA·h·g~(-1),在0.2C电流下50次循环后的容量保持率由93.5%提高至95.36%,5C的放电比容量由91.5 mA·h·g~(-1)增加到104.2 mA·h·g~(-1)。而且x=0.08时制备的样品具有最小的电荷转移阻抗。  相似文献   

10.
《应用化工》2017,(1):10-13
研究了甲基磷酸二甲酯(DMMP)含量对1 mol/L Li PF6/EC∶DEC∶EMC(1∶1∶1)电解液的电化学稳定性、热稳定性及电导率的影响,并首次将含DMMP的阻燃电解液应用于高压材料LiNi_(0.5)Mn_(1.5)O_4中。结果表明,加入DMMP添加剂后电解液的热稳定性得到提高,但是该添加剂电解液的电导率有所降低。研究了DMMP对LiNi_(0.5)Mn_(1.5)O_4扣式电池的电化学性能的影响,循环伏安测试表明,几乎不影响电解液在高压条件下的使用,充放电测试结果表明,DMMP的使用会降低电池的循环性能,当DMMP含量为5%时,对电池的循环性能影响较小。此外,交流阻抗(EIS)分析表明,DMMP对循环性能影响的主要原因是内阻随着循环的增加而增大。  相似文献   

11.
《应用化工》2022,(1):10-14
研究了甲基磷酸二甲酯(DMMP)含量对1 mol/L Li PF6/EC∶DEC∶EMC(1∶1∶1)电解液的电化学稳定性、热稳定性及电导率的影响,并首次将含DMMP的阻燃电解液应用于高压材料LiNi_(0.5)Mn_(1.5)O_4中。结果表明,加入DMMP添加剂后电解液的热稳定性得到提高,但是该添加剂电解液的电导率有所降低。研究了DMMP对LiNi_(0.5)Mn_(1.5)O_4扣式电池的电化学性能的影响,循环伏安测试表明,几乎不影响电解液在高压条件下的使用,充放电测试结果表明,DMMP的使用会降低电池的循环性能,当DMMP含量为5%时,对电池的循环性能影响较小。此外,交流阻抗(EIS)分析表明,DMMP对循环性能影响的主要原因是内阻随着循环的增加而增大。  相似文献   

12.
LiNi_(0.5)Mn_(1.5)O_4具有三维锂离子传输通道、4.7V的高平台电压,成为最有潜力的锂离子动力电池正极材料之一。但是,过渡金属Mn易溶于电解液,使电池循环性能和倍率性能变差。总结了Li_(0.5)Mn_(1.5)O_4正极材料的改性进展,在此基础上,提出了材料改性的研究方向。  相似文献   

13.
层状结构的Li1+xV3O8是一种比较理想的锂离子电池正极材料,它具有比容量高、价格便宜、循环寿命长、容易制备、在空气中稳定、对环境污染小等优点,使其近些年来得到了广泛的关注。综述了Li1+xV3O8正极材料的充放电反应特性,容量衰减的原因,合成制备方法和掺杂包覆改性的研究现状。最后对其以后的发展趋势进行了展望。  相似文献   

14.
采用溶胶-凝胶法制备了LiNi_(0.5)Mn_(1.5)O_4正极材料,并利用Zn F2对其表面进行包覆改性。XRD、SEM和TEM测试表明,包覆处理不影响材料的晶体结构,2%(质量分数,以LiNi_(0.5)Mn_(1.5)O_4质量计,下同)的Zn F2在LiNi_(0.5)Mn_(1.5)O_4表面形成了约7 nm厚均匀包覆层。对未包覆的LiNi_(0.5)Mn_(1.5)O_4和1%、2%、3%的Zn F2包覆后的LiNi_(0.5)Mn_(1.5)O_4的电化学性能进行了考察,发现Zn F2包覆能够减弱电解液与LiNi_(0.5)Mn_(1.5)O_4正极材料之间的相互作用,稳定电极表面,提高材料的电化学性能。其中,2%Zn F2包覆样品表现出最佳的循环性能和倍率性能,0.2C电流倍率下循环200圈后,其放电比容量维持在109.0 m A·h/g,保持率为79.7%;5 C电流倍率下循环500圈后,放电比容量维持在94.2 m A·h/g,保持率为85.6%。  相似文献   

15.
LiFePO4是一种很有潜力的锂离子电池正极材料。本文介绍了LiFePO4材料的共沉淀制备方法,利用碳包裹和金属离子掺杂两种改性方法可以提高LiFePO4材料的电化学性能,指出了LiFePO4材料改性的方向。  相似文献   

16.
采用微波共沉淀法合成了制备LiNi0.8Co0.2O2的前驱体球形α-Ni0.8Co0.2(OH)2,将其与LiOH·H2O混合,在氧气氛围下,用不同的烧结温度分别烧结10小时获得LiNi0.8Co0.2O2正极材料。用XRD、SEM对所制备的正极材料进行结构和形貌分析,用恒流充放电测试材料的电化学性能。结果表明,烧结温度对材料结构和电化学性能影响较大,所合成材料均具有α-NaFeO2的层状结构,烧结温度越高材料结晶越完善。900℃烧结的LiNi0.8Co0.2O2材料初级颗粒结晶最完善而且其二次团聚粒子的平均粒径最小,其表现出的电化学性能也最好,首次放电容量为189.1mA·h·g-1,首次循环放电效率达到92.5%。30循环后放电容量保持在148 mA·h·g-1,显示出较好的循环稳定性。  相似文献   

17.
锂离子电池正极材料Li Ni1/3Co1/3Mn1/3O2具有比商业化正极材料——LiCoO2更低廉的成本、更低的毒性、更好的热稳定性,近年来受到广大科研工作者的关注。主要介绍了Li Ni1/3Co1/3Mn1/3O2正极材料的合成改性方法及其近年来在电化学性能方面所取得的成果和进展,并简要概括了该材料结构和发展趋势。不断提高Li Ni1/3Co1/3Mn1/3O2正极材料的振实密度以及电化学性能特别是其在高倍率充放电条件下的循环性能将成为相关科研工作者的研究重点。  相似文献   

18.
以柠檬酸作为螯合剂,通过简单的溶胶-凝胶法制备了富锂层状氧化物Li1.2Ni0.16Co0.12Mn0.52O2纳米颗粒。X射线衍射(XRD)和透射电子显微镜(TEM)结果显示:尺寸在100~300 nm的产物具有良好的六方层状结构。作为锂离子电池正极活性物质,在0.1C电流密度和2.0~4.7 V电压区间,Li1.2Ni0.16Co0.12Mn0.52O2电极的初始放电比容量为245.9 mAh·g-1;在0.5C的电流密度下,经过60次循环容量保持率达到97.3%;同时在5C这样高的电流密度下,放电容量也能稳定在115.8 mAh·g-1。  相似文献   

19.
锂离子电池正极材料LiNi_xCo_yAl_(1-x-y)O_2(简称NCA)具有比容量高、功率性能好、安全性较好、成本较低等优点,成为研究的热点,并在电动汽车、电动工具等领域实现商业化应用。文章总结了正极材料NCA制备方法的研究进展,为不同电化学性能要求的NCA制备提供重要参考。  相似文献   

20.
采用锂镧锆氧(Li_7La_3Zr_2O_(12))快离子导体包覆Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料,获得了核壳结构复合材料,并探讨表面活性剂在包覆过程的作用机制。利用热重分析、X射线粉末衍射、扫描电子显微镜和电化学性能测试等方法进行结构和性能分析。结果表明,以Tween 20为表面活性剂,600℃合成的Li_7La_3Zr_2O_(12)包覆的富锂正极复合材料的粒径均匀,首次放电比容量达273.2 m A·h/g,1C倍率下45次循环后的容量保持率为86.6%,显示出较好的电化学性能。Li_7La_3Zr_2O_(12)快离子导体壳层提高了电极/电解液界面Li~+的扩散速率,抑制了电解质与活性材料之间的副反应,进而提高了材料的首次Coulomb效率和循环稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号